Ley de Newton
Enviado por franciscobeltron • 27 de Abril de 2014 • Documentos de Investigación • 2.586 Palabras (11 Páginas) • 172 Visitas
1ª Ley de Newton o ley de la inercia: (ejemplo)
2ª Ley de Newton: (ejemplo)
Fuerza. Aceleración
Masa Inercial
Ecuaciones
Fuerza Masa y Peso
Equilibrio Dinámico (ejemplo)
3ª Ley de Newton: (ejemplo)
Fuerza Normal (ejemplo)
Fuerza de rozamiento o Roce: (ejemplo)
Aplicaciones de las Leyes de Newton
Se denomina Leyes de Newton a tres leyes concernientes al movimiento de los cuerpos. La formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
1ª Ley de Newton o ley de la inercia: (ejemplo)
Un cuerpo permanecerá en un estado de reposo o de movimiento uniforme, a menos de que una fuerza externa actúe sobre él.
La primera ley de Newton, conocida también como Ley de inercia, nos dice que si sobre un cuerpo no actúa ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento.
Así, ejemplo, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento.
La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, por ejemplo, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial.
2ª Ley de Newton: (ejemplo)
Siempre que una fuerza actúe sobre un cuerpo produce una aceleración en la dirección de la fuerza que es directamente proporcional a la fuerza pero inversamente proporcional a la masa.
La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como:
F = m a
La unidad de fuerza en el Sistema Internacional es el Newton y se representa por N. Un Newton es la fuerza que hay que ejercer sobre un cuerpo de un kilogramo de masa para que adquiera una aceleración de 1 m/s2, o sea,
1 N = 1 Kg · 1 m/s2
La expresión de la Segunda ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m · a. Vamos a generalizar la Segunda ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad, es decir:
p = m · v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg·m/s . En términos de esta nueva magnitud física, la Segunda ley de Newton se expresa de la siguiente manera:
La Fuerza que actúa sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos:
F = d(m·v)/dt = m·dv/dt + dm/dt ·v
Como la masa es constante
dm/dt = 0
Y recordando la definición de aceleración, nos queda
F = m a
Tal y como habíamos visto anteriormente.
Otra consecuencia de expresar la Segunda ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actua sobre un cuerpo es cero, la Segunda ley de Newton nos dice que:
0 = dp/dt
Es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimiento: si la fuerza total que actúa sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.
Fuerza
Fuerza es toda causa capaz de modificar el estado de reposo o de movimiento de un cuerpo, o de producir una deformación.
Aceleración
Se define la aceleración como la relación entre la variación o cambio de velocidad de un móvil y el tiempo transcurrido en dicho cambio: a=v-vo/t
Donde "a" es la aceleración, "v" la velocidad final, "vo" la velocidad inicial y "t" el tiempo.
Masa Inercial
La masa inercial es una medida de la inercia de un objeto, que es la resistencia que ofrece a cambiar su estado de movimiento cuando se le aplica una fuerza. Un objeto con una masa inercial pequeña puede cambiar su movimiento con facilidad, mientras que un objeto con una masa inercial grande lo hace con dificultad.
La masa inercial viene determinada
...