Estructuralismo
Enviado por arnito • 4 de Mayo de 2013 • 723 Palabras (3 Páginas) • 288 Visitas
Ecuaciones empíricas OBJETIVOS Obtener una ecuación empírica que relaciona la elongación, Δx, que sufre un resorte al aplicarle una fuerza dada. Determinar, de forma experimental, la constante elástica (k) de un resorte. 1. FUNDAMENTO 1.1 Ley de Hooke Si estiramos un resorte cíe modo que uno de sus extremos se mueva (mientras el otro lado permanece fijo) hasta la posición x, dicho resorte ejercerá una fuerza sobre el agente que causa el estiramiento, cuyo valor es, con buena aproximación (1) donde k se denomina constante de fuerza del resorte. El signo menos indica que la dirección de la fuerza es siempre opuesta al desplazamiento. La fuerza ejercida por el resorte es una fuerza de restitución, y los resortes reales que se comportan según la ecuación (1), mientras no se estiren demasiado, se dicen obedecer la Ley de Hooke. 1.2 Ajuste de curvas En los experimentos físicos, con frecuencia surge el problema de obtener una dependencia funcional entre dos o más magnitudes físicas (variables), teniendo como base las mediciones de estas magnitudes físicas (datos experimentales). Esta dependencia funcional toma la forma de una ecuación, que por ser construida con los datos experimentales se le denomina empírica. Así, el alargamiento que sufre un resorte como consecuencia de la aplicación de una fuerza, puede ser descrito mediante una ecuación empírica que exprese la relación entre estas dos magnitudes (alargamiento y fuerza). En este caso, tanto la fuerza aplicada como el alargamiento producido se pueden medir y constituyen, respectivamente, las variables independiente y dependiente de la dependencia funcional. Para cada valor elegido de la variable independiente le corresponde un valor de la variable dependiente , y la dependencia funcional que se obtiene en base a los diversos valores de y forma la ecuación empírica, la cual se expresa como: (2) Los pasos a seguir para obtener una ecuación empírica, de modo muy general, son: 1. Identificar el sistema físico y el modelo experimental. 2. Elegir las magnitudes físicas a relacionar de forma adecuada. 3. Obtener los datos experimentales de las mediciones de las magnitudes anteriores. 4. Granear los datos experimentales en papel milimetrado, o mediante algún software ploteador. 5. Plantear la ecuación empírica que corresponda a la gráfica. 6. Si los puntos de la gráfica tienen un comportamiento lineal, entonces plantear como ecuación empírica la siguiente: (3) y calcular los parámetros a y b con ayuda del método de mínimos cuadrados (o regresión lineal) . 7. Si los puntos de la gráfica tienen, otro tipo de comportamiento, donde el origen (0, 0) pertenece a la curva, debemos plantear una ecuación empírica de la forma de una potencia, si este fuera el caso. (4) y luego proceder a linealizar (4), aplicando el logaritmo natural a ambos lados de la ecuación, es decir por último haciendo un adecuado cambio de variables
LABFISGE - Departamento Académico de
...