ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Euclide sy su vida


Enviado por   •  11 de Febrero de 2013  •  Biografía  •  1.666 Palabras (7 Páginas)  •  1.218 Visitas

Página 1 de 7

euclide sy su vida1145Euclides

Para el filósofo de Megara, véase Euclides de Megara.Pintura idealizada de Euclides.

Euclides (en griego Ευκλείδης, Eukleides) fue un matemático y geómetra griego(ca. 325 - ca. 265 a. C.). Se le conoce como "El Padre de la Geometría".

Su vida es poco conocida, salvo que vivió en Alejandría (actualmente Egipto) durante el reinado de Ptolomeo I. Ciertos autores árabes afirman que Euclides era hijo de Naucrates y se barajan tres hipótesis:

Euclides fue un personaje matemático histórico que escribió Los elementos y otras obras atribuidas a él.

Euclides fue el líder de un equipo de matemáticos que trabajaba en Alejandría. Todos ellos contribuyeron a escribir las obras completas de Euclides, incluso firmando los libros con el nombre de Euclides después de su muerte.

Las obras completas de Euclides fueron escritas por un equipo de matemáticos de Alejandría quienes tomaron el nombre Euclides del personaje histórico Euclides de Megara, que había vivido unos cien años antes.

Proclo, el último de los grandes filósofos griegos, quien vivió alrededor del 450, escribió importantes comentarios sobre el libro I de los Elementos, dichos comentarios constituyen una valiosa fuente de información sobre la historia de la matemática griega. Así sabemos, por ejemplo, que Euclides reunió aportes de Eudoxo en relación a la teoría de la proporción y de Teeteto sobre los poliedros regulares.

1112La geometría euclídea (o geometría parabólica)1 es el estudio de las propiedades geométricas de los espacios euclídeos. Es aquella que estudia las propiedades geométricas del plano afín euclídeo real y del espacio afín euclídeo tridimensional real mediante el método sintético, introduciendo los cinco postulados de Euclides.

También es común (abusando del lenguaje) decir que una geometría es euclídea si no es no euclídea, es decir, si en dicha geometría se verifica el quinto postulado de Euclides. Ésta denominación está cada vez más en desuso, debido a la pérdida de interés que va teniendo el tema de la posibilidad de trazar paralelas a una recta desde un punto exterior a la misma.

En ocasiones los matemáticos usan el término para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia, geometría euclídea es sinónimo de geometría plana y de geometría clásica.

11En geometría, el punto es uno de los entes fundamentales, junto con la recta y el plano. Son considerados conceptos primarios, o sea, que sólo es posible describirlos en relación con otros elementos similares. Se suelen describir apoyándose en los postulados característicos, que determinan las relaciones entre los entes geométricos fundamentales.

El punto es una «figura geométrica» adimensional: no tiene longitud, área, volumen, ni otro ángulo dimensional. No es un objeto físico. Describe una posición en el espacio, determinada respecto de un sistema de coordenadas preestablecido.

1123geometría euclidiana, la recta o línea recta, se extiende en una misma dirección, existe en una sola dimensión y contiene infinitos puntos; está compuesta de infinitos segmentos (el fragmento de línea más corto que une dos puntos). También se describe como la sucesión continua e indefinida de puntos en una sola dimensión, o sea, no posee principio ni fin.

Es uno de los entes geométricos fundamentales, junto al punto y el plano. Son considerados conceptos apriorísticos ya que su definición sólo es posible a partir de la descripción de las características de otros elementos similares. Así, es posible elaborar definiciones basándose en los postulados característicos que determinan relaciones entre los entes fundamentales. Las rectas se suelen denominar con una letra minúscula.

Las líneas rectas pueden ser expresadas mediante una ecuación del tipo y = m x + b, donde x, y son variables en un plano. En dicha expresión m es denominada la "pendiente de la recta" y está relacionada con la inclinación que toma la recta respecto a un par de ejes que definen el plano. Mientras que b es el denominado "término independiente" u "ordenada al origen" y es el valor del punto en el cual la recta corta al eje vertical en el plano.

1145El axioma que distingue a la Geometría euclídea de otras geometrías es el siguiente: En un plano, por un Punto exterior a una Recta pasa una y sólo una paralela a dicha recta.

 Rectas paralelas son aquellas rectas que se encuentran en un mismo plano, presentan la misma pendiente y que no presentan ningún punto en común, esto significa que no se cruzan, ni tocan y ni siquiera se van a cruzar sus prolongaciones. Uno de los ejemplos más populares es el de las vías de un tren.

 Dos rectas son paralelas si sus vectores directores son paralelos, es decir, si éstos son linealmente dependientes.

 Dos rectas son paralelas si tienen sus vectores directores iguales.

 Dos rectas son paralelas si tienen sus pendientes iguales.

 Dos rectas son paralelas si los coeficientes de x e y respectivos son proporcionales.

 Dos rectas son paralelas si forman un ángulo de 0º.

 Dos rectas son perpendiculares cuando al cortarse forman cuatro Ángulos iguales de 90º.

Rectas Perpendiculares

 Dos rectas son perpendiculares si sus vectores directores son perpendiculares.

 Dado un Punto perteneciente a una recta o exterior a ella, por él pasa una y sólo una perpendicular a dicha Recta.

Dos rectas son perpendiculares si sus Vectores directores son perpendiculares es decir el producto de los vectores es igual a cero

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com