La Probabilidad Se Utiliza En La Actualidad Para Sacar Probabilidades De Ganarse La Loteria, Probabilidad De Que Llueva, De Que Haya Un Terremoto, Etc, Siendo Mayoritariamente Especulaciones.
Enviado por kali16 • 18 de Septiembre de 2013 • 535 Palabras (3 Páginas) • 861 Visitas
Una de las primeras aplicaciones de la probabilidad fue en las ciencias actuariales, que comprenden el estudio de seguros de vida, fondos de pensiones y problemas relacionados. Otro uso importante de la probabilidad está en la estadística, la cual penetra en una multitud de campos, tales como finanzas, economía, biología, psicología y las ciencias sociales en general. El cálculo de probabilidades también se emplea en la física y química modernas y en muchas ingenierías, como por ejemplo en la teoría de ajuste por mínimos cuadrados, en el estudio de problemas de aglomeración (problemas de tráfico), en la teoría de muestreo y en el control de calidad de productos manufacturados.
En la mayoría de situaciones de la vida, el sentido común es un buen atajo para solucionar problemas o para tomar decisiones con un resultado positivo para nosotros. Pero en otras circunstancias, la intuición puede fallar. En esos casos, es mejor saber de teoría de probabilidades y no dejarnos llevar por el primer impulso. El matemático y divulgador científico Amir Aczel le explica a Punset en este capítulo de Redes cómo las matemáticas pueden ayudarnos en contextos tan diversos como en el juego o en las relaciones personales.
La mayoría de las investigaciones biomédicas utilizan muestras de probabilidad, es decir, aquellas que el investigador pueda especificar la probabilidad de cualquier elemento en la población que investiga. Las muestras de probabilidad permiten usar estadísticas inferenciales, aquellas que permiten hacer inferencias a partir de datos. Por otra parte, las muestras no probabilísticas solo permiten usarse estadísticas descriptivas, aquellas que solo permiten describir, organizar y resumir datos. Se utilizan cuatro tipos de muestras probabilísticas: muestras aleatorias simples, muestras aleatorias estratificadas, muestra por conglomerados y muestras sistemáticas.
La mecánica cuántica, debido al principio de indeterminación de Heisenberg, sólo puede ser descrita actualmente a través de distribuciones de probabilidad, lo que le da una gran importancia a las descripciones probabilísticas. Algunos científicos hablan de la expulsión del paraíso.[cita requerida] Otros no se conforman con la pérdida del determinismo. Albert Einstein comentó estupendamente en una carta a Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (Estoy convencido de que Dios no tira el dado). No obstante hoy en día no existe un medio mejor para describir la física cuántica si no es a través de la teoría de la probabilidad. Mucha gente hoy en día confunde el hecho de que la mecánica cuántica se describe a través de distribuciones de probabilidad con la suposición de que es por ello un proceso aleatorio, cuando la mecánica cuántica es probabilística no por el hecho de que siga procesos aleatorios sino por el hecho de no poder determinar con precisión sus parámetros fundamentales, lo que
...