ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ley De Hooke


Enviado por   •  8 de Octubre de 2013  •  972 Palabras (4 Páginas)  •  645 Visitas

Página 1 de 4

La ley de Hooke establece que el alargamiento unitario que experimenta un material elástico es directamente proporcional a la fuerza aplicada :

siendo el alargamiento, la longitud original, : módulo de Young, la sección transversal de la pieza estirada. La ley se aplica a materiales elásticos hasta un límite denominado límite elástico.

Ley de Hooke en solidos

Formula:

Caso unidimensional

En el caso de un problema unidimensional donde las deformaciones o tensiones en direcciones perpendiculares a una dirección dada son irrelevantes o se pueden ignorar , , y la ecuación anterior se reduce a:

donde es el módulo de Young.

Caso tridimensional isótropo

Para caracterizar el comportamiento de un sólido elástico lineal e isótropo se requieren además del módulo de Young otra constante elástica, llamada coeficiente de Poisson ( ). Por otro lado, las ecuaciones de Lamé-Hooke para un sólido elástico lineal e isótropo pueden ser deducidas del teorema de Rivlin-Ericksen, que pueden escribirse en la forma:

Caso tridimensional ortótropo

El comportamiento elástico de un material ortotrópico queda caracterizado por nueve constantes independientes: 3 módulos de elasticidad longitudinal , 3 módulos de rigidez y 3 coeficientes de Poisson . De hecho para un material ortotrópico la relación entre las componentes del tensor tensión y las componentes del tensor deformación viene dada por:

Formulas de solidos:

Ley de Hooke en resortes

La forma más común de representar matemáticamente la Ley de Hooke es mediante la ecuación del muelle o resorte, donde se relaciona la fuerza ejercida en el resorte con la elongación o alargamiento producido:

donde se llama constante elástica del resorte y es su elongación o variación que experimenta su longitud.

La energía de deformación o energía potencial elástica asociada al estiramiento del resorte viene dada por la siguiente ecuación:

Es importante notar que la antes definida depende de la longitud del muelle y de su constitución. Definiremos ahora una constante intrínseca del resorte independiente de la longitud de este y estableceremos así la ley diferencial constitutiva de un muelle. Multiplicando por la longitud total, y llamando al producto o intrínseca, se tiene:

Llamaremos a la tensión en una sección del muelle situada una distancia x de uno de sus extremos que tomamos como origen de coordenadas, a la constante de un pequeño trozo de muelle de longitud a la misma distancia y al alargamiento de ese pequeño trozo en virtud de la aplicación de la fuerza

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com