ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Limites Laterales


Enviado por   •  25 de Noviembre de 2013  •  460 Palabras (2 Páginas)  •  573 Visitas

Página 1 de 2

Limites laterales

CONCEPTO DE LÍMITE

El límite de la función f(x) en el punto a, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor a. Es decir el valor al que tienden las imágenes cuando los originales tienden a a.

Se dice que la función f(x) tiene como límite el número L, cuando x tiende aa, si fijado un número r eal positivo ε, mayor que cero, existe un número positivo δ dependiente de ε , tal que, para todos los valores de x distintos dea que cumplen la condición |x - a| < δ , se cumple que

|f(x) - L| <ε .

Existen funciones en las que a veces no es posible calcular directamente el límite en algún punto. Esto es debido a que estas funciones están definidas de diferente forma a la izquierda y a la derecha de ese punto. Para estudiar estos límites, se necesita recurrir a los límites laterales.

La condición necesaria y suficiente para que una función f(x) tenga límite en un punto de abscisa a es que tenga un límite lateral por la izquierda, tenga límite lateral por la derecha y ambos sean iguales. Si una función es convergente o tiene límite en un punto, éste debe ser único. Además, toda función que tiene límite en un punto está acotada en un entorno de ese punto.

Para calcular el límite de una función en un punto, no interesa lo que sucede en dicho punto sino a su alrededor.

LÍMITE POR LA DERECHA

El límite de una función f(x) cuando x tiende hacia el punto a por la izquierda es L, si y sólo si:

para todo ε > 0 existe δ > 0 tal que:

si x (a+δ, a), entonces |f (x) - L| <ε.

LÍMITE POR LA IZQUIERDA

El límite de una función f(x) cuando x tiende hacia el punto a por la izquierda es L, si y sólo si:

para todo ε > 0 existe δ > 0 tal que:

si x (a, a+δ), entonces |f (x) - L| <ε.

Límites laterales[editar • editar código]

El límite cuando: x → x0+ ≠ x → x0-. Por lo tanto, el límite cuando x → x0 no existe.

De manera similar, x puede aproximarse a c tomando valores más grandes que éste (derecha):

o tomando valores más pequeños (izquierda), en cuyo caso los límites pueden ser escritos como:

Si los dos límites anteriores son iguales:

entonces L se pueden referir como el límite de f(x) en c. Dicho de otro modo, si estos no son iguales a L entonces el límite, como tal, no existe.

C) LIMITES LATERALES.

C1) Límite por la izquierda:

C2) Límite por la derecha:

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com