Mediciones E Incertidumbres
Enviado por deybiabel • 27 de Abril de 2014 • 4.737 Palabras (19 Páginas) • 496 Visitas
MEDICIONES Y CÁLCULO DE ERRORES
FUNDAMENTO TEÓRICO
Mediciones y Errores
MEDIR es encontrar un número que exprese la relación entre la magnitud a determinar y la unidad de medida correspondiente a esa magnitud. Así, al medir la magnitud, M , encontramos el número x que satisface la relación:
M = x u
donde u es la unidad de medida arbitraria, fijada convencionalmente y de la misma naturaleza que M.
Clases de Mediciones
Medición Directa : Es cuando el resultado de la medición se obtiene inmediatamente después de aplicar el instrumento de medida al objeto a medir dando un valor de lectura en la escala correspondiente. Ejemplo: cuando se mide la temperatura de una persona, longitud de objetos, medidas de tiempos, masas.
Medición Indirecta. Es cuando el resultado de la medición se obtiene aplicando alguna fórmula matemática que relaciona la magnitud a medir con otras que se miden directamente. Ejemplo: Para medir el volumen (V) de un paralelepípedo, primero, medimos directamente: el largo (L), el ancho ( a) y la altura (h), luego con la fórmula matemática V = L.a. h. determinamos el volumen. Otro ejemplo de medición indirecta es cuando se determina el área de una superficie.
Error o Incertidumbre
Siempre que efectuemos mediciones de alguna magnitud física, estamos expuestos a cometer un error o incertidumbre, es decir que nunca sabremos el “valor verdadero” de lo medido. Esto se debe a dos razones: primero, los instrumentos empleados nunca son perfectos y segundo, la agudeza sensorial de quien efectúa la medición es limitada.
Si M es el valor verdadero de una magnitud y x es el resultado de su medición, el error está dado por:
e = M – x
Si e > 0 el error que se ha cometido se denomina “por exceso”, en caso contrario si e < 0 el error es “por defecto”.
Tipos de Error
Errores Sistemáticos.
Son los errores que se producen en una misma dirección, siempre por exceso o tambien por defecto. Se deben a fallas en los instrumentos de medida o a defectos de lectura por parte del experimentador. Los errores sistemáticos pueden ser de dos clases:
Instrumentales, cuando se debe a la imperfección de los instrumentos de medida en su fabricación. Por ejemplo, un error instrumental se comete al usar una balanza que siempre mide 900 gramos aparentando medir 1000 gramos.
Personales.Cuando intervienen los hábitos del experimentador. Es frecuente mencionar el error de paralaje el cual se comete cuando el observador al medir, no ubica su línea de mira correctamente por lo que obtiene lecturas incorrectas.
Errores Estadísticos o Aleatorios.
Son originados por factores desconocidos, que no se han tomado en cuenta al empezar la medición. Por ejemplo, un observador puede inadvertidamente cometer error al estimar el valor de la menor división de la escala del instrumento de medida. Estos errores se deben a factores que dependen del experimentador, como son: fatiga, falta de destreza en el manejo de los instrumentos, las limitaciones en la capacidad de discriminar al dar el valor de la medida.También se deben a las variaciones de las condiciones ambientales como son el cambio de temperatura. Estos errores llevan el signo que caracteriza su indeterminación y a ellos se les aplica la teoría de errores.
Exactitud y Precisión.
La exactitud está relacionada con el error sistemático y la precisión con el error aleatorio. cuanto menor sea el error sistemático, mayor será la exactitud y cuanto menor sea el error aleatorio, mayor será la precisión Los resultados de las mediciones se expresan mediante un valor promedio seguido de un factor de precisión. Por ejemplo, si el largo del manual de Física se expresa como:
L = (29,2 0,1) cm
Significa que el valor medio de las mediciones es 29,2 cm y que la dispersión de las mediciones están entre los valores (29,2 - 0,1) cm = 29,1 cm y ( 29,2 + 0,1) cm = 29,3 cm.
Cálculo del Error en Mediciones Directas.
Valor Medio o Valor más Probable: Xm
(1)
Desviación (Xi ): Es la diferencia de un valor medido cualquiera, menos el valor medio
Xi = Xi - Xm (2)
Error Absoluto del promedio:
(3)
Al efectuar varias medidas de la misma magnitud X, el resultado de la medición es el valor medio más o menos el Error Absoluto del Promedio, esto es:
X = Xm X (4)
Error Relativo. Es el cociente entre el Error Absoluto y el Valor Promedio.
(5)
Error Porcentual. Es el error relativo multiplicado por 100.
e% = er (100 ) (6)
Si se realiza una sola medición de la magnitud en estudio, el error absoluto depende del instrumento usado.
a) Si el instrumento de medida es analógico
X = (mínima división de la escala del instrumento)
b) Si el instrumento de medida es digital
X = 1, 0,1, 0,01, 0,001 ...........(según el rango elegido)
Cálculo del Error en Mediciones Indirectas.
La medida indirecta también está afectada de error debido a la propagación de los errores de las magnitudes directas que están relacionadas con la magnitud a medir.
Sea M una cantidad que se mide indirectamente, cuyo valor promedio se obtiene usando la fórmula genérica:
M = k xpmypn (7)
Es decir M = f (xp, yp), siendo k, m y n constantes de la fórmula, xp e yp son los promedios de las cantidades x e y que se miden directamente.
El error absoluto M se obtiene usando diferenciales:
M = k (mxpm-1ynx + nxpmypn-1y) (8)
Donde x y y
...