Modelo Electromagnetico
Enviado por Gustavo22599 • 23 de Julio de 2014 • 2.979 Palabras (12 Páginas) • 1.200 Visitas
Modelo electromagnetico.
Si bien en la separata 1.03 de este ensayo nos referiremos a ella con una relativa extensión, cuando hablemos del electromagnetismo, aquí podemos señalar sucintamente que fue desarrollada por quien es considerado el más imaginativo de los físicos teóricos del siglo XIX, nos referimos a James Clerk Maxwell (1831-1879). Este físico inglés dio en 1865 a los descubrimientos, que anteriormente había realizado el genial autodidacta Michael Faraday, el andamiaje matemático y logró reunir los fenómenos ópticos y electromagnéticos hasta entonces identificados dentro del marco de una teoría de reconocida hermosura y de acabada estructura. En la descripción que hace de su propuesta, Maxwell propugna que cada cambio del campo eléctricoengendra en su proximidad un campo magnético, e inversamente cada variación delcampo magnético origina uno eléctrico.Maxwell en 1865, la luz es una onda electromagnética que se propaga en el vacío.
Maxwell se basó en los estudios de Faradaydel electromagnetismo, y concluyó que las ondas luminosas son de naturaleza electromagnética. Una ONDA ELECTROMAGNÉTICA se produce por la variación en algún lugar del espacio de laspropiedades eléctricas y magnéticas de la materia. No necesita ningún medio para propagarse, son ondas transversales. Sin embargo, la teoría electromagnética deMaxwell, pese a su belleza, deja sin explicación fenómenos como el fotoeléctrico, y la emisión de luz por cuerpos incandescentes. En consecuencia, pasado el entusiasmo inicial, fue necesario para los físicos, como los hizo Planck (a regañadientes) en 1900, retomar la teoría corpuscular. La salida al dilema que presentaban las diferentes teorías sobre la naturaleza de la luz, empezó a tomar forma en 1895 en la mente de un estudiante de dieciséis años, Albert Einstein, que en el año 1905, en un ensayo publicado en el prestigioso periódico alemán Anales de la física, abre el camino para eliminar la dicotomía que existía sobre las consideraciones que se hacían sobre la luz al introducir el principio que más tarde se haría famoso como relatividad. TEORÍA ELECTROMAGNÉTICA
S i bien en la capítulo 04 de este ensayo nos referiremos a ella con una relativa extensión, cuando hablemos del electromagnetismo, aquí podemos señalar sucintamente que fue desarrollada por quien es considerado el más imaginativo de los físicos teóricos del siglo XIX, nos referimos a James Clerk Maxwell (1831-1879). Este físico inglés dio en 1865 a los descubrimientos, que anteriormente había realizado el genial autodidacta Michael Faraday, el andamiaje matemático y logró reunir los fenómenos ópticos y electromagnéticos hasta entonces identificados dentro del marco de una teoría de reconocida hermosura y de acabada estructura. En la descripción que hace de su propuesta, Maxwell propugna que cada cambio del campo eléctricoengendra en su proximidad un campo magnético, e inversamente cada variación delcampo magnético origina uno eléctrico. Dado que las acciones eléctricas se propagan con velocidad finita de punto a punto, se podrán concebir los cambios periódicos - cambios en dirección e intensidad - de un campo eléctricocomo una propagación de ondas. Tales ondas eléctricas están necesariamente acompañadas por ondas magnéticas indisolublemente ligadas a ellas. Los dos campos, eléctrico y magnético, periódicamente variables, están constantemente perpendiculares entre sí y a la dirección común de su propagación. Son, pues, ondas transversales semejantes a las de la luz. Por otra parte, las ondas electromagnéticas se transmiten, como se puede deducir de las investigaciones de Weber y Kohlrausch, con la misma velocidad que la luz. De esta doble analogía, y haciendo gala de una espectacular volada especulativa Maxwell termina concluyendo que la luz consiste en una perturbación electromagnética que se propaga en el éter. Ondas eléctricas y ondas luminosas son fenómenos idénticos.
Veinte años más tarde, Heinrich Hertz (1857-1894) comprueba que las ondas hertzianas de origen electromagnético tienen las mismaspropiedades que las ondas luminosas, estableciendo con ello, definitivamente, la identidad de ambos fenómenos.
Hertz, en 1888, logró producir ondas por medios exclusivamente eléctricos y, a su vez, demostrar que estas ondas poseen todas las características de la luz visible, con la única diferencia de que las longitudes de sus ondas son manifiestamente mayores. Ello, deja en evidencia que las ondas eléctricas se dejan refractar, reflejar y polarizar, y que su velocidad de propagación es igual a la de la luz. La propuesta de Maxwell quedaba confirmada: ¡la existencia de las ondas electromagnéticas era una realidad inequívoca! Establecido lo anterior, sobre la factibilidad de transmitir oscilaciones eléctricas sin inalámbricas, se abrían las compuertas para que se produjera el desarrollo de una multiplicidad de inventivas que han jugado un rol significativo en la evolución de la naturaleza humana contemporánea.
Pero las investigaciones de Maxwell y Hertz no sólo se limitaron al ámbito de las utilizaciones prácticas, sino que también trajeron con ellas importantes consecuencias teóricas. Todas las radiaciones se revelaron de la misma índole física, diferenciándose solamente en la longitud de onda en la cual se producen. Su escala comienza con las largas ondas hertzianas y, pasando por la luz visible, se llegan a la de los rayos ultravioletas, los rayos X, los radiactivos, y los rayos cósmicos.
Ahora, la teoría electromagnética de Maxwell, pese a su belleza, comporta debilidades, ya que deja sin explicación fenómenos tan evidentes como la absorción o emisión; el fotoeléctrico, y la emisión de luz por cuerpos incandescentes. En consecuencia, pasado el entusiasmo inicial, fue necesario para los físicos, como los hizo Planck en 1900, retomar la teoría corpuscular.
Espectro electromagnético.- La región correspondiente a la luz es una disminuta ventana en todo el espectro. La atmósfera terrestre sólo es transparente en la región óptica y de ondas de radio. El infrarrojo se puede observar desde gran altura con globos o satélites, al igual que los rayos γ, rayos X, y la radiación ultravioleta.
En física, se identifica a las ondas por lo que se llama longitud de onda, distancia entre dos máximos y por su frecuencia, número de oscilaciones por segundo, que se cuenta en un punto, y se mide en ciclos por segundo (oscilaciones por segundo). El producto de ambas cantidades es igual a la velocidad de propagación de la onda.
Representación de una onda. Se llama longitud de onda a la distancia entre dos "valles" o dos "montes".
En el otro extremos del espectro electromagnético
...