Regrecion Lineal
Enviado por lluvianel • 1 de Julio de 2013 • 1.175 Palabras (5 Páginas) • 529 Visitas
Regresión lineal
Abordaremos en esta página las distribuciones bidimensionales. Las observaciones se dispondrán en dos columnas, de modo que en cada fila figuren la abscisa x y su correspondiente ordenada y. La importancia de las distribuciones bidimensionales radica en investigar como influye una variable sobre la otra. Esta puede ser una dependencia causa efecto, por ejemplo, la cantidad de lluvia (causa), da lugar a un aumento de la producción agrícola (efecto). O bien, el aumento del precio de un bien, da lugar a una disminución de la cantidad demandada del mismo.
Si utilizamos un sistema de coordenadas cartesianas para representar la distribución bidimensional, obtendremos un conjunto de puntos conocido con el diagrama de dispersión, cuyo análisis permite estudiar cualitativamente, la relación entre ambas variables tal como se ve en la figura. El siguiente paso, es la determinación de la dependencia funcional entre las dos variables x e y que mejor ajusta a la distribución bidimensional. Se denomina regresión lineal cuando la función es lineal, es decir, requiere la determinación de dos parámetros: la pendiente y la ordenada en el origen de la recta de regresión, y=ax+b.
La regresión nos permite además, determinar el grado de dependencia de las series de valores X e Y, prediciendo el valor y estimado que se obtendría para un valor x que no esté en la distribución.
Vamos a determinar la ecuación de la recta que mejor ajusta a los datos representados en la figura. Se denomina error ei a la diferencia yi-y, entre el valor observado yi, y el valor ajustado y= axi+b, tal como se ve en la figura inferior. El criterio de ajuste se toma como aquél en el que la desviación cuadrática media sea mínima, es decir, debe de ser mínima la suma
El extremos de una función: máximo o mínimo se obtiene cuando las derivadas de s respecto de a y de b sean nulas. Lo que da lugar a un sistema de dos ecuaciones con dos incógnitas del que se despeja a y b.
El coeficiente de correlación es otra técnica de estudiar la distribución bidimensional, que nos indica la intensidad o grado de dependencia entre las variables X e Y. El coeficiente de correlación r es un número que se obtiene mediante la fórmula.
El numerador es el producto de las desviaciones de los valores X e Y respecto de sus valores medios. En el denominador tenemos las desviaciones cuadráticas medias de X y de Y.
El coeficiente de correlación puede valer cualquier número comprendido entre -1 y +1.
• Cuando r=1, la correlación lineal es perfecta, directa.
• Cuando r=-1, la correlación lineal es perfecta, inversa
• Cuando r=0, no existe correlación alguna, independencia total de los valores X e Y
Variantes de la regresión lineal
• La función potencial
y=c•xa
Se puede trasformar en
Si usamos las nuevas variables X=log x e Y=log y, obtenemos la relación lineal
Y=aX+b.
Donde b=log c
Ejemplo:
x 10 20 30 40 50 60 70 80
y 1.06 1.33 1.52 1.68 1.81 1.91 2.01 2.11
Usar la calculadora para transformar esta tabla de datos en esta otra
X=log x 1.0 1.30 1.477 1.60 1.699 1.778 1.845 1.903
Y=log y 0.025 0.124 0.182 0.225 0.258 0.281 0.303 0.324
Calcular mediante el programa regresión lineal los parámetros a y c.
• Función exponencial
...