Contabilidad: Ejercicios distribución normal
Enviado por mika-cr7 • 22 de Septiembre de 2016 • Trabajo • 1.085 Palabras (5 Páginas) • 4.812 Visitas
Ejercicios distribución normal
1. El tiempo medio en realizar una misma tarea por parte de los empleados de una empresa se distribuye según una distribución normal, con media de 5 días y desviación típica 1 día.
Calcular el porcentaje de empleados que realizan la tarea en un tiempo inferior a 7 días.
Respuesta 97.72 %
[pic 3]
t1 = -¥ y t2 = (7 -5)/1 = 2
En la tabla la probabilidad acumulada para el valor 2 (equivalente a un tiempo inferior a 7 días.). Esta probabilidad es 0,9772. Por lo tanto, el porcentaje de empleados que realizan la tarea en un tiempo inferior a 7 días es del 97,7%.
2. - La vida media de una lámpara, según el fabricante, es de 68 meses, con una desviación típica de 5. Se supone que se distribuye según una distribución normal En un lote de 10.000 lámparas.
a) ¿Cuántas lámparas superarán previsiblemente los 75 meses?.
b) ¿Cuántos lámparas se estropearán antes de 60 meses?
a)
t = (75 -68)/5 = 1,4
P (X > 75) = (t > 1,4) = 1 - P (t ≤ 1,4) = 1 - 0,9192 = 0,0808
Luego, el 8,08% de las lámparas (808 lámparas) superarán los 75 meses
b)
t = (60 -68)/5 = -1,6
P (X ≤ 60) = (t ≤ -1,6) = P (t> 1,6) = 1 - P (t ≤ 1,6) = 0,0548
Luego, el 5,48% del lote (548 lámparas) no llegarán probablemente a durar 60 meses
3. El consumo medio bimestral de energía eléctrica en una ciudad es de 59 Kwh., con una desviación típica de 6 Kwh. Se supone que se distribuye según una distribución normal.
a) ¿Cuántos Kwh. tendría que consumir bimestralmente para pertenecer al 5% de la población que más consume?.
b) Si usted consume 45 Kwh. ¿qué % de la población consume menos que usted?
a)
Buscamos en la tabla el valor de la variable tipificada cuya probabilidad acumulada es el 0,95 (95%), por lo que por arriba estaría el 5% restante. Este valor corresponde a t = 1,645. Ahora calculamos la variable normal X equivalente a ese valor de la normal tipificada:
1,645 = (X -59)/6 Þ X = 67,87
Por lo tanto, tendría usted que consumir más de 67,87 Kwh. bimestralmente para pertenecer al 5% de la población que más consume
b)
Vamos a ver en qué nivel de la población se situaría usted en función de los 45 Kwh. consumidos.
Calculamos el valor de la normal tipificada correspondiente a 45 Kwh.
t = (45 -59)/9 = -2.333
P (X ≤ 45) = P (t ≤ -2,333) = P (t > 2,333) = 1 - P (t≤ 2,333) = 1 - 0,9901 = 0,0099
Luego, tan sólo un 1,39% de la población consume menos que usted.
4. Una empresa instala en una ciudad 20.000 lámparas para su iluminación. La duración de una bombilla sigue una distribución normal con media 302 días y desviación típica 40 días. Calcular.
a) ¿Cuántas bombillas es de esperar que se fundan antes de 365 días?
b) ¿Cuántas durarán más de 400 días? Explica razonadamente las respuestas.
a)
Tipificamos el valor 365 Þ t = (365 -302)/40 = 1,575
P (X ≤ 365) = P (t ≤1,575 ) = 0,9418
Luego el 94,18% de las lámparas, es decir 20.000 ∙ 0.9418 = 18.836 bombillas se fundirán antes de 365 días
b)
Tipificamos el valor 400 Þ t = (400-302)/40 = 2,45
P (X > 400) = P (t >2,45 ) = 1- P (t ≤2,45 ) = 1 - 0,9929 = 0,0071
Entonces el 0,71% de las lámparas, es decir 20.000 ∙ 0.0071 = 142 bombillas durarán más de 400 días
...