ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

DATOS AGRUPADOS Y NO AGRUPADOS


Enviado por   •  15 de Agosto de 2011  •  1.222 Palabras (5 Páginas)  •  979 Visitas

Página 1 de 5

DATOS AGRUPADOS Y NO AGRUPADOS.

DATOS NO AGRUPADOS

Tendencia central: la tendencia central se refiere al punto medio de una distribución. Las medidas de tendencia central se conocen como medidas de posición.

Dispersión: se refiere a la extensión de los datos en una distribución, es decir, al grado en que las observaciones se distribuyen.

DATOS AGRUPADOS

Medidas de Dispersión Se llaman medidas de dispersión aquellas que permiten retratar la distancia de los valores de la variable a un cierto valor central, o que permiten identificar la concentración de los datos en un cierto sector del recorrido de la variable. Se trata de coeficiente para variables cuantitativas.

Medidas de Tendencia central La estadística busca entre otras cosas, describir las características típicas de conjuntos de datos y, como hay varias formas de hacerlo, existen y se utilizan varios tipos de promedios. Se les llama medidas de tendencia central porque general mente la acumulación más alta de datos se encuentra en los valores intermedios.

Las medidas de tendencia central comúnmente empleadas son:

•Media aritmética

•Mediana

•Moda

•Media geométrica

•Media armónica

•Los cuantiaos

GRAFICOS DE ESTADISTICA DESCRIPTIVA

Los gráficos se han de explicar enteramente por sí mismos. El contenido de un gráfico deberá ser tan completo como sea posible. Las escalas vertical y horizontal estarán rotuladas con claridad dando las unidades pertinentes. La mayorías de los gráficos presentan información numérica con escalas, que deben rotularse para describir completamente la variable presentada en la escala y para variables de medida se dirán las unidades de medición. No se debe tratar de abarcar demasiada información en un solo gráfico. Es mejor hacer varios gráficos que comprimir toda la información en uno solo. Una regla práctica segura es evitar gráficos que contengan más de 3 curvas. Los gráficos tienen que dar una visión general y no una imagen detallada de un conjunto de datos. Las presentaciones detalladas se deben reservar para las tablas. Las tablas se explicarán por sí mismas enteramente. como los gráficos, se ha de dar suficiente información en el título y en los encabezamientos de columnas y filas de la tabla para permitir que el lector identifique fácilmente su contenido. Como el título será por lo general lo primero que se lee en detalle, deberá suministrar toda la información esencial sobre el contenido de la tabla y deberá especificar el tiempo, lugar, material o estudio experimental y relaciones que se presenten en la tabla. Para cada variable numérica se han de dar las unidades. La función del rayado es dar claridad de interpretación. Las anotaciones de numéricas del cero se han de escribir explícitamente. Una anotación numérica no debe comenzar con un punto decimal. Los números que indican valores de la misma característica se han de dar con el mismo número de decimales.

NO AGRUPADOS

Otro modo habitual, y muy útil, de resumir una variable de tipo numérico es utilizando el concepto de percentiles, mediante diagramas de cajas. La Figura muestra un gráfico de cajas correspondiente a los datos de la Tabla I. La caja central indica el rango en el que se concentra el 50% central de los datos. Sus extremos son, por lo tanto, el 1er y 3er cuartil de la distribución. La línea central en la caja es la mediana. De este modo, si la variable es simétrica, dicha línea se encontrará en el centro de la caja. Los extremos de los "bigotes" que salen de la caja son los valores que delimitan el 95% central de los datos, aunque en ocasiones coinciden con los valores extremos de la distribución. Se suelen también representar aquellas observaciones que caen fuera de este rango (outliers o valores extremos). Esto resulta especialmente útil para comprobar, gráficamente, posibles errores en nuestros datos. En general, los diagramas de cajas resultan más apropiados para representar variables que presenten una gran desviación de la distribución normal.

DATOS AGRUPADOS

Histograma:

Está formado por rectángulos cuya base es la amplitud del intervalo

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com