Economia 4
Enviado por cindirella1155 • 24 de Marzo de 2013 • 3.096 Palabras (13 Páginas) • 388 Visitas
5.6.4 Dilema De Los Prisioneros
El dilema del prisionero es un problema fundamental de la teoría de juegos que muestra que dos personas pueden no cooperar incluso si en ello va el interés de ambas.
Fue desarrollado originariamente por Merrill Flood y Melvin Dresher mientras trabajaban en RAND en 1950. Albert W. Tucker formalizó el juego con la frase sobre las recompensas penitenciarias y le dio el nombre del "dilema del prisionero" (Poundstone, 1995).
Es un ejemplo de problema de suma no nula. Las técnicas de análisis de la teoría de juegos estándar, por ejemplo determinar el equilibrio de Nash, pueden llevar a cada jugador a escoger traicionar al otro, pero ambos jugadores obtendrían un resultado mejor si colaborasen.
En el dilema del prisionero iterado, la cooperación puede obtenerse como un resultado de equilibrio. Aquí se juega repetidamente, por lo que, cuando se repite el juego, se ofrece a cada jugador la oportunidad de castigar al otro jugador por la no cooperación en juegos anteriores. Así, el incentivo para defraudar puede ser superado por la amenaza del castigo, lo que conduce a un resultado cooperativo.
La enunciación clásica del dilema del prisionero es:
La policía arresta a dos sospechosos. No hay pruebas suficientes para condenarlos y, tras haberlos separado, los visita a cada uno y les ofrece el mismo trato. Si uno confiesa y su cómplice no, el cómplice será condenado a la pena total, diez años, y el primero será liberado. Si uno calla y el cómplice confiesa, el primero recibirá esa pena y será el cómplice quien salga libre. Si ambos confiesan, ambos serán condenados a seis años. Si ambos lo niegan, todo lo que podrán hacer será encerrarlos durante seis meses por un cargo menor.
Lo que puede resumirse como:
Tú confiesas Tú lo niegas
Él confiesa Ambos son condenados a 6 años. Él sale libre y tú eres condenado a 10 años.
Él lo niega Él es condenado a 10 años y tú sales libre. Ambos son condenados a 6 meses.
Vamos a suponer que ambos prisioneros son completamente egoístas y su única meta es reducir su propia estancia en la cárcel. Como prisioneros tienen dos opciones: cooperar con su cómplice y permanecer callado, o traicionar a su cómplice y confesar. El resultado de cada elección depende de la elección del cómplice. Por desgracia, uno no conoce qué ha elegido hacer el otro. Incluso si pudiesen hablar entre sí, no podrían estar seguros de confiar mutuamente.
Si uno espera que el cómplice escoja cooperar con él y permanecer en silencio, la opción óptima para el primero sería confesar, lo que significaría que sería liberado inmediatamente, mientras el cómplice tendrá que cumplir una condena de 10 años. Si espera que su cómplice decida confesar, la mejor opción es confesar también, ya que al menos no recibirá la condena completa de 10 años, y sólo tendrá que esperar 6, al igual que el cómplice. Y, sin embargo, si ambos decidiesen cooperar y permanecer en silencio, ambos serían liberados en sólo 6 meses.
Confesar es una estrategia dominante para ambos jugadores. Sea cual sea la elección del otro jugador, pueden reducir siempre su sentencia confesando. Por desgracia para los prisioneros, esto conduce a un resultado regular, en el que ambos confiesan y ambos reciben largas condenas. Aquí se encuentra el punto clave del dilema. El resultado de las interacciones individuales produce un resultado que no es óptimo -en el sentido de eficiencia de Pareto-; existe una situación tal que la utilidad de uno de los detenidos podría mejorar (incluso la de ambos) sin que esto implique un empeoramiento para el resto. En otras palabras, el resultado en el cual ambos detenidos no confiesan domina al resultado en el cual los dos eligen confesar.
Si se razona desde la perspectiva del interés óptimo del grupo (de los dos prisioneros), el resultado correcto sería que ambos cooperasen, ya que esto reduciría el tiempo total de condena del grupo a un total de un año. Cualquier otra decisión sería peor para ambos si se consideran conjuntamente. A pesar de ello, si siguen sus propios intereses egoístas, cada uno de los dos prisioneros recibirá una sentencia dura.
Si has tenido una oportunidad para castigar al otro jugador por confesar, entonces un resultado cooperativo puede mantenerse. La forma iterada de este juego (mencionada más abajo) ofrece una oportunidad para este tipo de castigo. En ese juego, si el cómplice traiciona y confiesa una vez, se le puede castigar traicionándolo a la próxima. Así, el juego iterado ofrece una opción de castigo que está ausente en el modo clásico del juego.
Una opción es considerar este dilema como una simple "máquina de la verdad". El jugador puede tomar no dos, sino tres opciones: cooperar, no cooperar o, sencillamente, no jugar. La respuesta lógica en este caso es "no jugar", pues el prisionero carece de información suficiente para jugar correctamente: no sabe cuál será la opción de su compañero. No hay tal dilema, pues no es posible el juego. Si juega, se trata de una "apuesta", más que de una solución lógica.
Pensemos también que el prisionero en realidad está "jugando" con su carcelero, no con el otro prisionero. El carcelero le ofrece una opción. Para él, la mayor ganancia sería condenar al prisionero a la pena mayor, pues ése es su trabajo. Si logra condenar a los dos a la máxima pena, doble ganancia. El prisionero sabe eso, en el fondo. Sólo "jugaría" si supiera con toda certeza que el policía cumpliría su palabra a pesar de su confesión. Pero tampoco lo sabe. En realidad, prisionero-carcelero y prisionero-prisionero están jugando al mismo juego: encubrir o traicionar (en el caso del ejemplo de los prisioneros, no concuerda el verdad o mentira puesto que decir la verdad sería traicionar).
Tú encubres Tú traicionas
Él encubre Máximo beneficio común Tú ganas, él pierde
Él traiciona Él gana, tú pierdes Máximo perjuicio común
En este caso, decir la verdad equivale a cooperar, a callarse. Pero un jugador sólo optará por la casilla "verdad" si sabe que el otro jugador también opta por la misma solución. En la vida real, eso no lo sabemos: hay que "jugar", es decir, arriesgarse. Todo se basa en la "relación de confianza" existente entre los dos jugadores. Pongamos, por ejemplo, que los dos prisioneros son hermanos, con una relación de confianza muy estrecha. O que lo son uno de los prisioneros y el carcelero. Entonces sí sabrían (casi con toda seguridad, pero nunca completa) cuál sería la opción de su compañero, y entonces siempre jugarían correctamente: cooperarían.
La única solución lógica
...