Muestreo Aleatorio Simple
Enviado por • 1 de Junio de 2013 • 1.235 Palabras (5 Páginas) • 510 Visitas
MUESTRA PILOTO (np)
n_p=%(N)→ %=5.5
n_p=(0.055)(355)
n_p=20
La información obtenida mediante la prueba piloto es:
ORDEN ALEATORIO INGRESOS MILLONES VIVIENDA PROPIA TOTAL PERSONAS HOMBRE MUJER TRABAJA ESTRATO CONSUMO CARNE (gr)
7 1,65 No 3 1 2 1 5 799
20 2,25 No 3 1 2 2 4 842
28 1,14 Si 4 1 3 1 5 832
47 0,84 Si 3 1 2 1 1 610
85 1,62 Si 3 1 2 1 2 716
93 1,86 Si 5 2 3 2 3 757
99 1,56 No 4 3 1 1 3 720
119 2,45 Si 5 2 3 2 5 636
134 2,06 Si 5 2 3 2 4 636
146 3,42 Si 5 2 3 3 4 526
179 1,63 Si 3 2 1 1 3 605
198 0,99 Si 3 1 2 1 5 506
207 1,75 Si 2 0 2 1 2 684
219 2,15 No 3 1 2 2 5 613
241 2,46 No 3 1 2 2 3 608
280 1,28 No 1 1 0 1 2 516
295 1,36 No 3 0 3 1 2 805
332 2,05 Si 3 2 1 2 1 630
343 0,98 No 2 1 1 1 3 520
345 1,32 No 3 1 2 1 3 510
INGRESOS PROMEDIO
Media
X ̅=(∑▒X_i )/n
X ̅= 34,82/20
X ̅=1,74
El valor 1,74 indica que los ingresos mensuales de las familias tienden a este valor, es decir, el promedio de los ingresos de las familias es de 1,74 (un millón setecientos cuarenta mil pesos).
Error de estimación
E=Em x ((X ) ̅ )
De donde:
Em=5%=0.05
Entonces:
E=0,05 x 1,74
E=0,087 (Ochenta y siete mil pesos)
La variación entre los ingresos o diferencia entre estos es de $87000, es decir, hay $87000 por debajo y por encima de la media.
Varianza
S^2= (∑▒〖Xi^2- nX ̅^2 〗)/(n-1)
S^2= (68,0172-20〖(1,74)〗^2)/(20-1)
S^2= 0,39
La diferencia promedio que hay entre cada uno de los ingresos de las familias, respecto a su punto central (la media), es de 0,39 (trescientos noventa mil pesos).
Desviación estándar
S=√(S^2 )
S=√0,39
S=0,62
El grado de variabilidad entre los ingresos mensuales de las familias es de 0.62, es decir, la dispersión de los ingresos alrededor de la media, hacia arriba y hacia abajo, es de 0,62 (seiscientos veinte mil pesos).
Coeficiente de variación
CV= S/X ̅ x100%
CV= 0,62/1,74 x100%
CV=36%
El coeficiente de variación es mayor que el 30%, existiendo una heterogeneidad entre los datos, es decir, los ingresos que reciben las familias mensualmente no son iguales, ya que hay una notoria variabilidad entre los ingresos.
Primera aproximación
n=n_0/(1+n_0/N)
De donde:
n_0= (z^2 s^2)/E^2 →Z=1,96
n_0=(〖1,96〗^2 (0,39))/(0,0〖87〗^2 )
n_0=198
Entonces:
n=198/(1+198/355)
n=127
Para realizar el estudio de investigación, se deben elegir 127 familias, las cuales representan el 36% de la población total.
CONSUMO PROMEDIO DE CARNE POR FAMILIA
Media
X ̅=(∑▒X_i )/n
X ̅= 13071/20
X ̅=653,55
El valor 653,55 indica que el consumo de carne de las familias tiende a este valor, es decir, las familias representan un promedio en el consumo de carne diario de 653,55 gramos.
Error de estimación
E=Em x ((X ) ̅ )
De donde:
Em=5%=0.05
Entonces:
E=0,05 x 653,55
E=32,68
La variación entre el consumo de carne de las familias o diferencia entre estos es de 32,68 gramos, es decir, hay 32,68 gramos por debajo y por encima del consumo promedio de carne.
Varianza
S^2= (∑▒〖Xi^2- nX ̅^2 〗)/(n-1)
S^2= (8778493-20〖(653,55)〗^2)/(20-1)
S^2= 12417,94
La diferencia promedio que hay entre el consumo de carne de cada familia, respecto a su punto central (la media), es de 12417,94.
Desviación estándar
S=√(S^2 )
S=√12417,94
S=111
El grado de variabilidad entre el consumo diario de carne de las familias es de 111 gramos, es decir, la dispersión de los ingresos alrededor de la media, hacia arriba y hacia abajo, es de 111 gramos, identificando que hay poca dispersión ya que la desviación típica es mucho menor que la media.
Coeficiente de variación
CV= S/X ̅ x100%
CV= 111/653,55 x100%
CV=17%
El coeficiente de variación es menor que el 30%, existiendo una homogeneidad entre los datos, es decir, el consumo de carne de las familiasestá muy cercano al promedio del consumo de carne diario.
Primera aproximación
n=n_0/(1+n_0/N)
De donde:
n_0= (z^2 s^2)/E^2 →Z=1,96
n_0=(〖1,96〗^2 (12417,94))/〖32,68〗^2
n_0=44,40
Entonces:
n=44,40/(1+44,40/355)
n=39
Para realizar el estudio de investigación, se deben elegir 39 familias, las cuales representan el 11% de la población total.
PROPORCIÓN DE FAMILIA CON VIVIENDA PROPIA
Proporción (p):
p= (∑▒a_i )/n_p
p= 11/20
p=0,55
p=55%
De donde:
q=1-p
q=1-0,55
q=0.45=45%
El 55% de las familias tienen vivienda propia, indicando a su vez que el 45% no tiene vivienda de su propiedad.
Varianza 〖( S〗_P^2)
...