ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

UNIDAD 3 Análisis De Series De Tiempo


Enviado por   •  31 de Diciembre de 2012  •  2.855 Palabras (12 Páginas)  •  1.666 Visitas

Página 1 de 12

3 Análisis de serie de tiempo.

3.1 Componentes de una serie de tiempo.

Tendencia, es la componente de largo plazo que constituye la base del crecimiento o declinación de una serie histórica, como se presenta en la figura 1.1.

Los fuerzas básicas que producen o afectan la tendencia de una serie son: cambios en la población, inflación, cambio tecnológico e incremento en la productividad.

Figura 1.1 Gráfica de una serie de datos con tendencia

Ciclicidad, es un conjunto de fluctuaciones en forma de onda o ciclos, de más de un año de duración, producidos por cambios en las condiciones económicas, como se presenta en la figura 1.2.

Representan la diferencia entre los valores esperados de una variable (tendencia) y los valores reales (la variación residual que fluctúa alrededor de la tendencia).

Figura 1.2 Gráfica de una serie de datos con ciclicidad

Estacionalidad, las fluctuaciones estacionales se encuentran típicamente en los datos clasificados por trimestres, mes o semana. La variación estacional se refiere a un patrón de cambio, regularmente recurrente a través del tiempo. El movimiento se completa dentro de la duración de un año y se repite a sí mismo año tras año, como se presenta en la figura 1.3.

Figura 1.3 Gráfica de una serie de datos con estacionalidad.

Aleatoriedad, este comportamiento irregular está compuesto por fluctuaciones causadas por sucesos impredecibles o no periódicos, como el clima poco usual, huelgas, guerras, rumores, elecciones y cambio de leyes, como se presenta en la figura 1.4.

Figura 1. 4 Gráfica de una serie de datos con aleatoriedad

Estacionaria, es aquella serie de datos cuyas propiedades estadísticas básica, como media y la varianza, permanecen constantes en el tiempo, se dice que una serie que no presenta crecimiento o declinación es estacionaria, como se presenta en la figura 1.5.

Figura 1. 5 Gráfica de una serie de datos estacionaria

3.2 Método de mínimos cuadrados.

Mínimos cuadrados es una técnica de optimización matemática que, dada una serie de mediciones, intenta encontrar una función que se aproxime a los datos (un "mejor ajuste"). Intenta minimizar la suma de cuadrados de las diferencias ordenadas (llamadas residuos) entre los puntos generados por la función y los correspondientes en los datos. Específicamente, se llama mínimos cuadrados promedio (LMS) cuando el número de datos medidos es 1 y se usa el método de descenso por gradiente para minimizar el residuo cuadrado. Se sabe que LMS minimiza el residuo cuadrado esperado, con el mínimo de operaciones (por iteración). Pero requiere un gran número de iteraciones para converger.

Un requisito implícito para que funcione el método de mínimos cuadrados es que los errores de cada medida estén distribuidos de forma aleatoria. El teorema de Gauss-Markov prueba que los estimadores mínimos cuadráticos carecen de sesgo y que el muestreo de datos no tiene que ajustarse, por ejemplo, a una distribución normal. También es importante que los datos recogidos estén bien escogidos, para que permitan visibilidad en las variables que han de ser resueltas (para dar más peso a un dato en particular, véase mínimos cuadrados ponderados).

La técnica de mínimos cuadrados se usa comúnmente en el ajuste de curvas. Muchos otros problemas de optimización pueden expresarse también en forma de mínimos cuadrados, minimizando la energía o maximizando la entropía

Dada una serie de datos la recta de mejor ajuste a esos datos está dada por y = mx =b, donde la pendiente es

y la ordenada en el origen es

En el caso frecuente en el que la recta deba pasar por el origen, su ecuación será y la pendiente es

La bondad del ajuste por mínimos cuadrados se puede estimar calculando el coeficiente de correlación

Un coeficiente de correlación próximo a la unidad indica un buen ajuste.

Debe tenerse en cuenta que los datos experimentales estarán afectados por sus incertidumbres y por tanto los valores de m y b tendrán también incertidumbre. Para determinarla de forma sencilla, se supone que los datos en x no tienen incertidumbre y que los datos en y tienen todos la misma uy. Entonces la incertidumbre en la pendiente está dada por

donde U es el valor mayor entre uy y oe.

La incertidumbre en la ordenada en el origen es:

donde U es el valor mayor entre uy y oe.

En el caso de una recta que pasa por el origen, la incertidumbre en la pendiente es

donde U es el valor mayor entre uy y oe.

3.3 Métodos de promedios móviles.

La utilización de esta técnica supone que la serie de tiempo es estable, esto es, que los datos que la componen se generan sin variaciones importantes entre un dato y otro (error aleatorio=0)2, esto es, que el comportamiento de los datos aunque muestren un crecimiento o un decrecimiento lo hagan con una tendencia constante.

Cuando se usa el método de promedios móviles se está suponiendo que todas las observaciones de la serie de tiempo son igualmente importantes para la estimación del parámetro a pronosticar (en este caso los ingresos). De esta manera, se utiliza como pronóstico para el siguiente periodo el promedio de los n valores de los datos más recientes de la serie de tiempo.

Utilizando una expresión matemática, tenemos:

El término móvil indica que conforme se tienen una nueva observación de la serie de tiempo, se reemplaza la observación más antigua de la ecuación y se calcula un nuevo promedio.

El resultado es que el promedio se moverá, esto es, conforme se tengan nuevos datos y se vayan sustituyendo en la fórmula, el valor del promedio irá modificándose.

No existe una regla específica que nos indique cómo seleccionar la base del promedio móvil n. Si la variable que se va a pronosticar no presenta variaciones considerables, esto es, si su comportamiento es relativamente estable en el tiempo, se recomienda que el valor de n sea grande. Por el contrario, es aconsejable un valor de n pequeño si la variable muestra patrones

...

Descargar como (para miembros actualizados) txt (17 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com