Hidrodinámica
Enviado por zackryder • 18 de Diciembre de 2012 • Informe • 1.269 Palabras (6 Páginas) • 449 Visitas
Hidrodinámica
Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:
• Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio de presión, a diferencia de lo que ocurre con los gases.
• Se considera despreciable la pérdida de energía por la viscosidad, ya que se supone que un líquido es óptimo para fluir y esta pérdida es mucho menor comparándola con la inercia de su movimiento.
• Se supone que el flujo de los líquidos es en régimen estable o estacionario, es decir, que la velocidad del líquido en un punto es independiente del tiempo.
La hidrodinámica tiene numerosas aplicaciones industriales, como diseño de canales, construcción de puertos y presas, fabricación de barcos, turbinas, etc.
Daniel Bernoulli fue uno de los primeros matemáticos que realizó estudios de hidrodinámica.
Características y leyes generales
La hidrodinámica o fluidos en movimientos presenta varias características que pueden ser descritas por ecuaciones matemáticas muy sencillas. Entre ellas:
Ley de Torricelli: si en un recipiente que no está tapado se encuentra un fluido y se le abre al recipiente un orificio la velocidad con que caerá ese fluido será:
La otra ecuación matemática que describe a los fluidos en movimiento es el número de Reynolds:
donde d es la densidad v la velocidad D es el diámetro del cilindro y n es la viscosidad dinámica.
Caudal
El caudal o gasto es una de las magnitudes principales en el estudio de la hidrodinámica. Se define como el volumen de líquido que fluye por unidad de tiempo . Sus unidades en el Sistema Internacional son los m3/s y su expresión matemática:
Esta fórmula nos permite saber la cantidad de líquido que pasa por un conducto en cierto intervalo de tiempo o determinar el tiempo que tardará en pasar cierta cantidad de líquido.
Principio de Bernoulli
Artículo principal: Principio de Bernoulli.
El principio de Bernoulli es una consecuencia de la conservación de la energía en los líquidos en movimiento. Establece que en un líquido incompresible y no viscoso, la suma de la presión hidrostática, la energía cinética por unidad de volumen y la energía potencialgravitatoria por unidad de volumen, es constante a lo largo de todo el circuito. Es decir, que dicha magnitud toma el mismo valor en cualquier par de puntos del circuito. Su expresión matemática es:
donde es la presión hidrostática, la densidad, la aceleración de la gravedad, la altura del punto y la velocidad del fluido en ese punto. Los subíndices 1 y 2 se refieren a los dos puntos del circuito.
La otra ecuación que cumplen los fluidos no compresibles es la ecuación de continuidad, que establece que el caudal es constante a lo largo de todo el circuito hidráulico:
donde es el área de la sección del conducto por donde circula el fluido y su velocidad media.
Fluidos compresibles
En el caso de fluidos compresibles, donde la ecuación de Bernouilli no es válida, es necesario utilizar la formulación más completa deNavier y Stokes. Estas ecuaciones son la expresión matemática de la conservación de masa y de cantidad de movimiento. Para fluidos compresibles pero no viscosos, también llamados fluidos coloidales, se reducen a las ecuaciones de Euler
tubo de Pitot
El tubo de Pitot se utiliza para calcular la presión total, también denominada presión de estancamiento, presión remanente o presión de remanso (suma de la presión estática y de la presión dinámica).
Lo inventó el ingeniero francés Henri Pitot en 1732.1 Lo modificóHenry Darcy, en 1858.2 Se utiliza mucho para medir la velocidad del viento en aparatos aéreos y para cuantificar las velocidades de aire y gases en aplicaciones industriales.
Mide la velocidad en un punto dado de la corriente de flujo, no la media de la velocidad del viento
Teoría de funcionamiento
En el sitio 1 del esquema adjunto, embocadura del
...