ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Distribución normal


Enviado por   •  6 de Marzo de 2013  •  Tesis  •  691 Palabras (3 Páginas)  •  444 Visitas

Página 1 de 3

Distribución normal

HISTORIA:

La distribución normal fue presentada por primera vez por Abraham de Moivre en un artículo del año 1733,2 que fue reimpreso en la segunda edición de su The Doctrine of Chances, de 1738, en el contexto de cierta aproximación de la distribución binomial para grandes valores de n. Su resultado fue ampliado por Laplace en su libro Teoría analítica de las probabilidades (1812), y en la actualidad se llama Teorema de De Moivre-Laplace.

Hay varios modos de definir formalmente una distribución de probabilidad. La forma más visual es mediante su función de densidad. De forma equivalente, también pueden darse para su definición la función de distribución, los momentos, la función característica y la función generatriz de momentos, entre otros.

Definición:

En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de lasdistribuciones de probabilidad de variable continua que con más frecuencia aparece aproximada en fenómenos reales.

La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro estadístico. Esta curva se conoce como campana de Gauss y es el gráfico de una función gaussiana.

La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.

De hecho, la estadística es un modelo matemático que sólo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental, de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacional.

La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.

Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son:

• caracteres morfológicos de individuos como la estatura;

• caracteres fisiológicos como el efecto de un fármaco;

• caracteres sociológicos como el consumo de cierto

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com