Campo Magnetico
Enviado por mariorivas • 1 de Julio de 2013 • 2.196 Palabras (9 Páginas) • 290 Visitas
INTRODUCCION
El magnetismo está muy relacionado con la electricidad. El Electromagnetismo es la parte de la Física que estudia la relación entre corrientes eléctricas y campos magnéticos. Una carga eléctrica crea a su alrededor un campo eléctrico. El movimiento de la carga eléctrica produce un campo magnético. Toda carga eléctrica que se mueve en el entorno de un campo magnético experimenta una fuerza. Dos cargas eléctricas móviles, no sólo están sometidas a las fuerzas electrostáticas que se ejercen mutuamente debidas a su carga, sino que además entre ellas actúan otras fuerzas electromagnéticas que dependen de los valores de las cargas y de las velocidades de éstas.
CAMPO MAGNÉTICO
Los campos magnéticos son originados por corrientes eléctricas, las cuales pueden ser corrientes macroscópicas en cables, o corrientes microscópicas asociadas con los electrones en órbitas atómicas.
El campo magnético B se define en función de la fuerza ejercida sobre las cargas móviles en la ley de la fuerza de Lorentz. La interacción del campo magnético con las cargas, nos lleva a numerosas aplicaciones prácticas. Las fuentes de campos magnéticos son fundamentalmente de naturaleza dipolar, habiendo un polo norte y un polo sur magnéticos. La unidad SI para el campo magnético es el Tesla, que se puede ver desde la parte magnética de la ley de fuerza de Lorentz, Fmagnética = qvB, que está compuesta de (Newton x segundo)/(Culombio x metro). El Gauss (1 Tesla = 10.000 Gauss) es una unidad de campo magnético mas pequeña.
Ley de la Fuerza de Lorentz
Se definen ambos campos magnéticos y eléctricos a partir de la ley de la fuerza de Lorentz:
La fuerza eléctrica es recta, siendo su dirección la del campo eléctrico si la carga q es positiva, pero la dirección de la parte magnética de la fuerza está dada por la regla de la mano derecha.
El campo magnético
Una barra imantada o un cable que transporta corriente pueden influir en otros materiales magnéticos sin tocarlos físicamente porque los objetos magnéticos producen un ‘campo magnético’. Los campos magnéticos suelen representarse mediante ‘líneas de campo magnético’ o ‘líneas de fuerza’. En cualquier punto, la dirección del campo magnético es igual a la dirección de las líneas de fuerza, y la intensidad del campo es inversamente proporcional al espacio entre las líneas.
En el caso de una barra imantada, las líneas de fuerza salen de un extremo y se curvan para llegar al otro extremo; estas líneas pueden considerarse como bucles cerrados, con una parte del bucle dentro del imán y otra fuera. En los extremos del imán, donde las líneas de fuerza están más próximas, el campo magnético es más intenso; en los lados del imán, donde las líneas de fuerza están más separadas, el campo magnético es más débil. Según su forma y su fuerza magnética, los distintos tipos de imán producen diferentes esquemas de líneas de fuerza.
La estructura de las líneas de fuerza creadas por un imán o por cualquier objeto que genere un campo magnético puede visualizarse utilizando una brújula o limaduras de hierro. Los imanes tienden a orientarse siguiendo las líneas de campo magnético. Por tanto, una brújula, que es un pequeño imán que puede rotar libremente, se orientará en la dirección de las líneas. Marcando la dirección que señala la brújula al colocarla en diferentes puntos alrededor de la fuente del campo magnético, puede deducirse el esquema de líneas de fuerza.
Igualmente, si se agitan limaduras de hierro sobre una hoja de papel o un plástico por encima de un objeto que crea un campo magnético, las limaduras se orientan siguiendo las líneas de fuerza y permiten así visualizar su estructura.
Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma ángulos rectos con la velocidad de la partícula y con la dirección del campo. Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven en trayectorias curvas. Los campos magnéticos se emplean para controlar las trayectorias de partículas cargadas en dispositivos como los aceleradores de partículas o los espectrógrafos de masas.
Inductancia Magnética.
La inductancia es el campo magnético que crea una corriente eléctrica al pasar a través de una bobina de hilo conductor enrollado alrededor de la misma que conforma un inductor. Un inductor puede utilizarse para diferenciar señales cambiantes rápidas o lentas. Al utilizar un inductor con un condensador, la tensión del inductor alcanza su valor máximo a una frecuencia dependiente de la capacitancia y de la inductancia.
La inductancia depende de las características físicas del conductor y de la longitud del mismo. Si se enrolla un conductor, la inductancia aumenta. Con muchas espiras se tendrá más inductancia que con pocas. Si a esto añadimos un núcleo de ferrita, aumentaremos considerablemente la inductancia.
Existen fenómenos de inducción electromagnética generados por un circuito sobre sí mismo llamados de inducción propia o autoinducción; y los producidos por la proximidad de dos circuitos llamados de inductancia mutua.
Un ejemplo de inductancia propia, lo tenemos cuando por una bobina circula una corriente alterna. Como sabemos, al circular la corriente por la bobina formará un campo magnético alrededor de ella, pero al variar el sentido de la corriente también lo hará el campo magnético alrededor de la bobina, con lo cual se produce una variación en las líneas del flujo magnético a través de ella, esto producirá una fem inducida en la bobina.
La fem inducida con sus respectivas corrientes inducidas son contrarias a la fem y la corriente recibidas. A este fenómeno se le llama autoinducción.
Por definición: la autoinducción es la producción de una fem en un circuito por la variación de la corriente en ese circuito. La fem inducida siempre se opone al cambio de corriente. La capacidad de una bobina de producir una fem autoinducida se mide con una magnitud llamada inductancia.
La bobina es conocida como autoinductor o simplemente inductor. En muchos circuitos de corriente alterna se utilizan inductores o bobinas con el objetivo de producir, en forma deliberada, inductancia en el circuito; cuando ésta posee un gran número de espiras tiene un alto valor de inductancia y en caso contrario su valor es pequeño. Cuanto mayor sea la inductancia, más lentamente se elevará o descenderá la corriente
...