ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Campo Magnetico


Enviado por   •  14 de Octubre de 2013  •  1.937 Palabras (8 Páginas)  •  373 Visitas

Página 1 de 8

CAMPO MAGNETICO

El campo magnético es una región del espacio en la cual una carga eléctrica puntual de valor q que se desplaza a una velocidad , sufre los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad como al campo, llamada inducción magnética o densidad de flujo magnético. Así, dicha carga percibirá una fuerza descrita con la siguiente igualdad.

(Nótese que tanto F como v y B son magnitudes vectoriales y el producto cruz es un producto vectorial que tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será

La existencia de un campo magnético se pone de relieve gracias a la propiedad localizada en el espacio de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre, puede ser considerada un magnetómetro.

HISTORIA

Si bien algunos marcos magnéticos han sido conocidos desde la antigüedad, como por ejemplo el poder de atracción que sobre el hierro ejerce la magnetita, no fue sino hasta el siglo XIX cuando la relación entre la electricidad y el magnetismo quedó plasmada, pasando ambos campos de ser diferenciados a formar el cuerpo de lo que se conoce como electromagnetismo.

Antes de 1820, el único magnetismo conocido era el del hierro. Esto cambió con un profesor de ciencias poco conocido de la Universidad de Copenhague, Dinamarca, Hans Christian Oersted. En 1820 Oersted preparó en su casa una demostración científica a sus amigos y estudiantes. Planeó demostrar el calentamiento de un hilo por una corriente eléctrica y también llevar a cabo demostraciones sobre el magnetismo, para lo cual dispuso de una aguja de brújula montada sobre una peana de madera.

Mientras llevaba a cabo su demostración eléctrica, Oersted notó para su sorpresa que cada vez que se conectaba la corriente eléctrica, se movía la aguja de la brújula. Se calló y finalizó las demostraciones, pero en los meses sucesivos trabajó duro intentando explicarse el nuevo fenómeno. Pero no pudo La aguja no era ni atraída ni repelida por ella. En vez de eso tendía a quedarse en ángulo recto. Hoy sabemos que esto es una prueba fehaciente de la relación intrínseca entre el campo magnético y el campo eléctrico plasmada en las ecuaciones de Maxwell.

Como ejemplo para ver la naturaleza un poco distinta del campo magnético basta considerar el intento de separar el polo de un imán. Aunque rompamos un imán por la mitad éste "reproduce" sus dos polos. Si ahora volvemos a partir otra vez en dos, nuevamente tendremos cada trozo con dos polos norte y sur diferenciados. En magnetismo no existen los monopolos magnéticos.

NOMBRE

El nombre de campo magnético o intensidad del campo magnético se aplica a dos magnitudes:

 La excitación magnética o campo H es la primera de ellas, desde el punto de vista histórico, y se representa con H.

 La inducción magnética o campo B, que en la actualidad se considera el auténtico campo magnético, y se representa con B.

Desde un punto de vista físico, ambos son equivalentes en el vacío, salvo en una constante de proporcionalidad que depende del sistema de unidades: 1 en el sistema de Gauss, en el SI. Solo se diferencian en medios materiales con el fenómeno de la magnetización.

USO

El campo H se ha considerado tradicionalmente el campo principal, ya que se puede relacionar con unas cargas, masas o polos magnéticos por medio de una ley similar a la de Coulomb para la electricidad. Maxwell, por ejemplo, utilizó este enfoque, aunque aclarando que esas cargas eran ficticias. Con ello, no solo se parte de leyes similares en los campos eléctricos y magnéticos (incluyendo la posibilidad de definir un potencial escalar magnético), sino que en medios materiales, con la equiparación matemática de H con E, por un lado, y de B con D, por otro, se pueden establecer paralelismos útiles en las condiciones de contorno y las relaciones termodinámicas; la fórmulas correspondientes en el sistema electromagnético de Gauss son:

En electrotecnia no es raro que se conserve este punto de vista porque resulta práctico.

Con la llegada de las teorías del electrón de Lorentz y Poincaré, y de la relatividad de Einstein, quedó claro que estos paralelismos no se corresponden con la realidad física de los fenómenos, por lo que hoy es frecuente, sobre todo en física, que el nombre de campo magnético se aplique a B (por ejemplo, en los textos de Alonso-Finn y de Feynman).1 En la formulación relativista del electromagnetismo, E no se agrupa con H para el tensor de intensidades, sino con B.

En 1944, F. Rasetti preparó un experimento para dilucidar cuál de los dos campos era el fundamental, es decir, aquel que actúa sobre una carga en movimiento, y el resultado fue que el campo magnético real era B y no H.2

Para caracterizar H y B se ha recurrido a varias distinciones. Así, H describe cuan intenso es el campo magnético en la región que afecta, mientras que B es la cantidad de flujo magnético por unidad de área que aparece en esa misma región. Otra distinción que se hace en ocasiones es que H se refiere al campo en función de sus fuentes (las corrientes eléctricas) y B al campo en función de sus efectos (fuerzas sobre las cargas).

FUENTES DEL CAMPO

...

Descargar como (para miembros actualizados) txt (10 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com