ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

DME proyecto


Enviado por   •  4 de Mayo de 2023  •  Documentos de Investigación  •  561 Palabras (3 Páginas)  •  29 Visitas

Página 1 de 3

$TITLE SIMULTANEOUS OPTIMIZATION FOR HEN SYNTHESIS (Yee and Grossmann, 1990)

OPTION ITERLIM=5000;

OPTION RESLIM=5000;

SETS I HOT STREAMS /1*3/

J COLD STREAMS /1*1/

K NOK + 1 /1*4/;

SCALAR NOK NUMBER OF STAGES IN SUPERSTRUCTURE / 2 /;

ALIAS(K,K1);

BINARY VARIABLES

Z(I,J,K) EXISTENCE FOR THE HEAT EXCHANGERS

ZCU(I) EXISTENCE FOR THE COOLERS FOR HOT STREAM I

ZHU(J) EXISTENCE FOR THE HEATER FOR COLD STREAM J;

POSITIVE VARIABLES

QCOLD(I) CONSUMPTION OF COLD UTILITY FOR HOT STREAM I IN KWH

QHOT(J) CONSUMPTION OF HOT UTILITY FOR COLD STREAM J

TKI(I,K) STAGE BOUNDARY TEMP. OF HOT STREAM I,

TKJ(J,K) STAGE BOUNDARY TEMP. OF COLD STREAM J,

Q(I,J,K) HEAT LOAD OF MATCH BETWEEN I AND J IN STAGE K,

DT(I,J,K) DRIVING FORCE OF BOUNDARY OF INTERVAL K,

DTHU(J) DRIVING FORCE FOR HEATERS,

DTCU(I) DRIVING FORCE FOR COOLERS;

VARIABLES

COST HEN AND UTILITY COST;

PARAMETERS

FCI(I) HEAT CAPACITY FLOWRATE OF HOT STREAM

FCJ(J) HEAT CAPACITY FLOWRATE OF COLD STREAM

TIIN(I) SUPPLY TEMP. OF HOT STREAM

TIOUT(I) TARGET TEMP. OF HOT STREAM

TJIN(J) SUPPLY TEMP. OF COLD STREAM

TJOUT(J) TARGET TEMP. OF COLD STREAM

QCI(I) HEAT CONTENT HOT I

QCJ(J) HEAT CONTENT COLD J

CFI(I) STREAM-INDIVIDUAL FILM COEFFICIENT HOT I,

CFJ(J) STREAM-INDIVIDUAL FILM COEFFICIENT COLD J,

*

HUCOST COST OF HEATING UTILITY,

CUCOST COST OF COOLING UTILITY,

UNITC FIXED CHARGE FOR EXCHANGER,

ACOEFF AREA COST COEFFICIENT FOR EXCHANGERS,

HUCOEFF AREA COST COEFFICIENT FOR HEATERS,

CUCOEFF AREA COST COEFFICIENT FOR COOLERS,

AEXP COST EXPONENT FOR EXCHANGERS,

CFHU STREAM-INDIVIDUAL FILM COEFFICIENT HOT UTILITY,

CFCU STREAM-INDIVIDUAL FILM COEFFICIENT COLD UTILITY,

THUIN INLET TEMPERATURE HOT UTILITY,

THUOUT OUTLET TEMPERATURE HOT UTILITY,

TCUIN INLET TEMPERATURE COLD UTILITY,

TCUOUT OUTLET TEMPERATURE COLD UTILITY,

DTMAX(I,J) UPPER BOUND OF DRIVING FORCE,

A(I,J,K) AREA FOR EXCHANGER FOR MATCH IJ IN INTERVAL K (Chen approx.),

ACU(I) AREA COOLERS,

AHU(J) AREA HEATERS,

TMAPP MINIMUM APPROACH TEMPERATURE

COSTHEAT COST OF HEATING,

COSTCOOL COST OF COOLING,

INVCOST INVESTMENT COST;

EQUATIONS

STRENBH(I) STREAM ENERGY BALANCE OF HOT STREAM,

STRENBC(J) STREAM ENERGY BALANCE OF COLD STREAM,

LOADHM(I,K) LOAD OF HOT SIDE MATCH IN INTERVAL K,

LOADCM(J,K) LOAD OF COLD SIDE MATCH IN INTERVAL K,

TIINTK(I) TIIN=TKI1,

TJINTK(J) TJIN=TKJLAST,

TKICON(I,K) CONSTRAINT ON TKI,

TKJCON(J,K) CONSTRAINT ON TKJ,

TCON1(I) CONSTRAINT ON TIOUT,

TCON2(J) CONSTRAINT ON TJOUT,

LOADQC(I) HEAT LOAD COLD UTILITY WITH HOT I,

LOADQH(J) HEAT LOAD HOT UTILITY WITH COLD J,

LOGCOND(I,J,K) LOGICAL CONSTRAINTS FOR UNIT ASSIGNMENT,

LOGCU(I) LOGICAL CONSTRAINTS FOR COOLERS,

LOGHU(J) LOGICAL CONSTRAINTS FOR HEATERS,

DTCON(I,J,K) DRIVING FORCE FOR INLET STAGE K,

DTCONA(I,J,K,K1) DRIVING FORCE FOR OUTLET STAGE NOK,

DTHUCON(J) DETERMINING DRIVING FORCE FOR HEATERS,

DTCUCON(I) DETERMINING DRIVING FORCE FOR COOLERS,

OBJ OBJECTIVE FUNCTION;

********************************************************************************

****MODEL***********************************************************************

********************************************************************************

*$ONTEXT

STRENBH(I)..

(TIIN(I)-TIOUT(I))*FCI(I ) =E= SUM((K,J)$(ORD(K) LE NOK),Q(I,J,K))+QCOLD(I);

STRENBC(J)..

(TJOUT(J)-TJIN(J))*FCJ(J)=E=SUM((K,I )$(ORD(K ) LE NOK), Q(I,J,K))+QHOT(J);

*$OFFTEXT

LOADHM(I,K)$(ORD(K) LE NOK)..

(TKI(I,K)-SUM(K1$(ORD (K1) EQ (ORD(K)+1)), TKI(I,K1)))*FCI(I)

=E=SUM(J, Q(I,J,K));

LOADCM(J,K)$(ORD(K) LE NOK)..

(TKJ(J,K)- SUM(K1$(ORD(K1) EQ (ORD(K)+1)), TKJ(J,K1)))*FCJ(J)

=E=SUM(I, Q(I,J,K));

TIINTK(I)..

TIIN(I)=E=TKI(I,'1');

TJINTK(J)..

TJIN(J)=E=SUM(K$ (ORD(K) EQ (NOK+1)), TKJ(J,K));

TKICON(I,K)$(ORD(K) LE NOK)..

TKI(I,K)=G= SUM(K1$(ORD(K1) EQ (ORD(K)+1)), TKI(I,K1));

TKJCON(J,K)$(ORD(K ) LE NOK)..

TKJ(J,K)=G=SUM(K1$(ORD (K1) EQ (ORD(K)+1)), TKJ(J,K1));

TCON1(I)..

TIOUT(I)=L=SUM(K$(ORD (K) EQ (NOK+1)), TKI(I,K));

TCON2(J)..

TJOUT(J)=G=TK J(J,'1 ');

LOADQC(I)..

(SUM(K$(ORD(K) EQ (NOK+1)), TKI(I,K))-TIOUT(I))*FCI (I)

=E=QCOLD(I);

LOADQH(J)..

(TJOUT(J)-TK J(J, '1'))*FCJ(J)

=E=QHOT(J);

LOGCOND(I,J,K)$(ORD(K) LE NOK)..

Q(I,J,K) - MIN( QCI(I), QCJ(J)) * Z(I,J,K)=L=0;

LOGCU(I)..

QCOLD(I) - QCI(I) * ZCU(I)=L=0;

LOGHU(J)..

QHOT(J) - QCJ(J) * ZHU(J)=L=0;

DTCON(I,J,K)$(ORD(K) LE NOK)..

DT(I,J,K)=L=TKI(I,K)-TKJ(J,K)+DTMAX(I, J)*(1 -Z(I,J,K ));

...

Descargar como (para miembros actualizados) txt (7 Kb) pdf (38 Kb) docx (10 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com