Diseño De Transformadores
Enviado por marcelfajardo • 9 de Septiembre de 2012 • 2.018 Palabras (9 Páginas) • 424 Visitas
Calculo y diseño de transformadores de poder, para potencias de hasta 1000W. Dirigido a personas con conocimientos básicos de electrónica que desean diseñar o construir los transformadores de alimentación para red eléctrica de 50 o 60 Hz para sus proyectos electrónicos.
(No aplica para transformadores de fuentes computadas)
Redactado por Jorge L. Jiménez, de Ladelec.com
Resumen de conceptos
Para sentar las bases de este tutorial es importante conocer los términos que usaremos, los cuales mostramos a continuación y no son de difícil comprensión.
Relación de transformación:
Es la relación (o resultado de dividir) entre el número de espiras del primario y del secundario, la cual es igual a la relación entre la tensión del primario y del secundario sin carga.
Relación entre corrientes:
Es inversa a la relación de transformación. Es decir que a mayor corriente menos vueltas o espiras. Mientras que en la relación de transformación a mayor tensión (voltaje) más espiras o vueltas.
Rendimiento:
Nos dice cuanta potencia se aplica al transformador y cuanta entrega este a la carga. La diferencia se pierde en los devanados en forma de calor por efecto JOULE, debido a que estos no tienen una resistencia nula, y también en el núcleo debido a histéresis y corrientes de Foucault. El transformador ideal rendirá un 100 % pero en la práctica no existe.
Núcleo:
Son las chapas de material ferro-magnético, hierro al que se añade una pequeña porción de silicio. Se recubre de barniz aislante que evita la circulación de corrientes de Foucault. De su calidad depende que aumente el rendimiento del transformador hasta un valor cercano al 100 %.
Potencia= V x I
N1/N2 = V1/V2 léase: número de vueltas del primario sobre el número de vueltas del secundario es igual a la relación entre el voltaje del primario sobre el voltaje del secundario.
Fórmulas: Son muchas las fórmulas que entran en juego pero la mayoría tienen que ver con elementos que afectan muy poco el rendimiento. Sin embargo hay dos sumamente importantes que no podemos ignorar y son las siguientes:
Fórmulas
Area = A
Léase: área es igual a la constante * multiplicada por la raíz cuadrada de la potencia del transformador
donde * = 0.8 si el núcleo es fino y 1.2 si el núcleo es de inferior calidad. Tomamos normalmente 1
El resultado se obtiene en cm2 y es el área rectangular del núcleo marcada en azul de la figura.
Relación de vueltas (espiras) por voltio = A x 0.02112
El voltaje deseado para cada caso se dividirá por el resultado de este número. El resultado es el número de vueltas o espiras para ese voltaje en particular.
Ejemplo real:
Para construir o bobinar un transformador de 200 Watt para un Voltaje primario de 115V y un secundario 50V
Comenzamos por el área del núcleo del Transformador:
Ver la formula arriba en fondo gris. Para una potencia de 200W, obtenemos un área de 14.14 cm2
Luego calculamos la relación de vueltas por voltio:
A x 0.02112
14.14 x 0.02112 = 0.29 Relación de vueltas = 0.29
Entonces:
115V / 0.29 = 396 vueltas en el primario
50V / 0.29 = 172 vueltas en el secundario
Ahora sabiendo la potencia (200W) podemos calcular la corriente máxima presente en ambos devanados para esa potencia, partiendo de la formula I = W / V
I = 200 / 115 = 1.73A corriente en el primario 1.73 amperios.
I = 200 / 50 = 4A corriente máxima en el secundario 4 amperios.
Si utilizamos una tabla de equivalencias en AWG como la que mostramos a continuación, sabremos el calibre del alambre a utilizar para los respectivos bobinados (o embobinados).
De acuerdo a la tabla, para el primario necesitamos alambre calibre AWG 19 o 20 y para el secundario alambre calibre 15 o 16.
AWG Diam. mm Amperaje AWG Diam. mm Amperaje
1 7.35 120 16 1.29 3,7
2 6.54 96 17 1.15 3,2
3 5.86 78 18 1.024 2,5
4 5.19 60 19 0.912 2,0
5 4.62 48 20 0.812 1,6
6 4.11 38 21 0.723 1,2
7 3.67 30 22 0.644 0,92
8 3.26 24 23 0.573 0,73
9 2.91 19 24 0.511 0,58
10 2.59 15 25 0.455 0,46
11 2.30 12 26 0.405 0,37
12 2.05 9,5 27 0.361 0,29
13 1.83 7,5 28 0.321 0,23
14 1.63 6,0 29 0.286 0,18
15 1.45 4,8 30 0.255 0,15
Colaboración de: Jorge L. Jiménez de: www.ladelec.com para
Comunidad Electrónicos www.comunidadelectronicos.com
Copyright - Todos los derechos reservados.
Califica esta nota:
________________________________________
Construya su Propio Transformador
Por Harold P. Strand PARTE I - EL DISEÑO
EL DISEÑAR y construir pequeños transformadores monofásicos, como los empleados por experimentadores en electricidad y radio-técnicos, constituye una ocupación interesante e instructiva. Aun cuando es posible comprar transformadores de voltajes corrientes, con frecuencia se requieren voltajes especiales para tareas experimentales o aparatos nuevos. Es mucho más económico el construir uno mismo tal transformador que encargar su construcción a terceros.
Un transformador elemental consiste de un núcleo de hierro laminado sobre el cual se envuelve una bobina de alambre aislado. Esta bobina puede ser de devanado simple, con empalmes, como un transformador de automóvil, o compuesto de dos bobinas separadas, como en las Figs. 1 y 5. Este último tipo de devanado, siendo el más común, será discutido en este artículo.
Como se indica en la Fig. 5, una de estas bobinas lleva el nombre de "bobina primaria," ,o "primario" simplemente, y está conectada a la entrada de corriente. La segunda bobina, desde la cual se toma la energía, se llama "bobina secundaria," o "secundario," y tendrá mayor o menor número de vueltas que el primario, según el caso. El núcleo se compone de placas o láminas de acero de silicio, pues la inversión constante del flujo de la corriente alterna produce contra-corrientes en un núcleo de hierro macizo. Por lo tanto, si se empleara un núcleo de hierro macizo, se produciría un recalentamiento en el transformador. El laminado tiende a quebrar dichas contracorrientes.
Para resumir, la teoría del funcionamiento de un transformador es la siguiente: El voltaje de la línea envía una corriente por el primario, produciéndose de ese modo el campo magnético (líneas de fuerzas invisibles) dentro del núcleo de hierro. Como dicho núcleo también rodea al secundario, el campo magnético, que
...