HERRAMIENTAS DE LA PRODUCTIVIDAD
Enviado por • 25 de Marzo de 2013 • 2.829 Palabras (12 Páginas) • 803 Visitas
.- Elabore y Detalle Esquemáticamente la Relación o Complementariedad Conceptual
Entre La Ciencia Administrativa y las Matemáticas Aplicadas. Señale Ejemplos;
2.- Defina el Concepto de Sistema de Ecuaciones Lineales y Soluciones Gráficas.
Grafique Tres (03) ejemplos
Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas. Una solución para el sistema debe proporcionar un valor para cada incógnita, de manera que en ninguna de las ecuaciones del sistema se llegue a una contradicción. En otras palabras el valor que reemplazamos en las incógnitas debe hacer cumplir la igualdad del sistema.
Las incógnitas se suelen representar utilizando las últimas letras del alfabeto latino, o si son demasiadas, con subíndices.
El método gráfico para resolver este tipo de sistemas consiste, por tanto, en representar en unos ejes cartesianos, o sistema de coordenadas, ambas rectas y comprobar si se cortan y, si es así, dónde. Esta última afirmación contiene la filosofía del proceso de discusión de un sistema por el método gráfico. Hay que tener en cuenta, que, en el plano, dos rectas sólo pueden tener tres posiciones relativas (entre sí): se cortan en un punto, son paralelas o son coincidentes (la misma recta). Si las dos rectas se cortan en un punto, las coordenadas de éste son el par (x, y) que conforman la única solución del sistema, ya que son los únicos valores de ambas incógnitas que satisfacen las dos ecuaciones del sistema, por lo tanto, el mismo es compatible determinado. Si las dos rectas son paralelas, no tienen ningún punto en común, por lo que no hay ningún par de números que representen a un punto que esté en ambas rectas, es decir, que satisfaga las dos ecuaciones del sistema a la vez, por lo que éste será incompatible, o sea sin solución. Por último, si ambas rectas son coincidentes, hay infinitos puntos que pertenecen a ambas, lo cual nos indica que hay infinitas soluciones del sistema (todos los puntos de las rectas), luego éste será compatible indeterminado.
Posiciones relativas de dos rectas en el plano
3.- Defina el Concepto y Tipos de Funciones Matemáticas y su Representación Gráfica.
Grafique las Funciones de Oferta, Demanda y del Punto de Equilibrio de Ambas.
Función: Es una relación o correspondencia binaria (es decir, entre dos magnitudes), de manera que a cada valor de la primera, le corresponde un único valor de la segunda.
Tipos de funciones
Función Constante
Se llama función constante a la que no depende de ninguna variable, y la podemos representar como una función matemática de la forma:
F(x)=a donde a pertenece a los números reales y es una constante.
Como se puede ver es una recta horizontal en el plano x y, en la gráfica la hemos representado en el plano, pero, como se puede ver la función no depende de x, si hacemos:
Y=F(x) entonces Y=adonde a tiene un valor constante, en la gráfica tenemos representadas:
para valores de a iguales:Y=8Y=4,2Y=-3,6
La función constante como un polinomio en x es de la forma
Se dice que es constante porque su valor no cambia, a cada valor de x le corresponde siempre el valor a.
El Dominio de la función constante va hacer igual siempre a "Todos los Reales"Mientras que la imagen tan solo va hacer el valor de a.
Es una Función Continua.
¿Qué significa la recta representa por la función y=0?
Representa que la recta pasara por todo el eje X.
Función lineal
Es aquella que satisface las siguientes dos propiedades:
Propiedad aditiva (también llamada propiedad de superposición): Si existen f(x) y f(y), entonces f(x + y) = f(x) + f(y). Se dice que f es un grupo isomorfista con respecto a la adición.
Propiedad homogénea: f (ax) = af(x), para todo número real a. Esto hace que la homogeneidad siga a la propiedad aditiva en todos los casos donde a es racional. En el caso de que la función lineal sea continua, la homogeneidad no es un axioma adicional para establecer si la propiedad aditiva esta establecida.
En esta definición x no es necesariamente un número real, pero es en general miembro de algún espacio vectorial.
Para comprobar la linealidad de una función no es necesario realizar la comprobación de las propiedades de homogeneidad y aditividad por separado, con mostrar que la linealidad queda demostrada.
El concepto de linealidad puede ser extendido al operador lineal. Ejemplos importantes de operaciones lineales incluyen a la derivada considerada un operador diferencial y muchos construidos de él, tal como el Laplaciano. Cuando una ecuación diferencial puede ser expresada en forma lineal, es particularmente fácil de resolver al romper la ecuación en pequeñas piezas, resolviendo cada una de estas piezas y juntando las soluciones.
Las ecuaciones no lineales y las funciones no lineales son de interés en la física y matemáticas debido a que son difíciles de resolver y dan lugar a interesantes fenómenos como la teoría del caos.
Función Cuadrática
La función cuadrática responde a la formula: y= a x2 + b x + c con a =/ 0. Su gráfica es una curva llamada parábola cuyas características son:
Si a es mayor a 0 es cóncava y admite un mínimo. Si a es menor a 0 es convexa y admite un máximo.
Vértice: Puntos de la curva donde la función alcanza el máximo o el mínimo.
Eje de simetría: x = xv.
Intersección con el eje y.
Intersecciones con el eje x: se obtiene resolviendo la ecuación de segundo grado.
Función Logarítmica
Se llama función logarítmica a la función real de variable real:
La función logarítmica es una aplicación biyectiva definida de R*+ en R :
La función logarítmica solo está definida sobre los números positivos.
Los números negativos y el cero no tienen logaritmo
La función logarítmica de base a es la recíproca de la función exponencial de base a.
Las funciones logarítmicas más usuales son la de base 10 y la de base e = 2"718281...
Debido a la continuidad de la función logarítmica, los límites de la forma
...