Principios De Contaduria
Enviado por gahutama • 18 de Febrero de 2012 • 1.204 Palabras (5 Páginas) • 561 Visitas
Y OPERACIONES.
1.Interna:
El resultado de sumar dos números reales es otro número real.
a + b
+
2.Asociativa:
El modo de agrupar los sumandos no varía el resultado.
(a + b) + c = a + (b + c) •
3.Conmutativa:
El orden de los sumandos no varía la suma.
a + b = b + a
4.Elemento neutro:
El 0 es el elemento neutro de la suma porque todo número sumado con él da el mismo número.
a + 0 = a
+ 0 =
5.Elemento opuesto
Dos números son opuestos si al sumarlos obtenemos como resultado el cero.
e − e = 0
El opuesto del opuesto de un número es igual al mismo número.
−(− ) =
Diferencia de números reales
La diferencia de dos números reales se define como la suma del minuendo más el opuesto del sustraendo.
a − b = a + (−b)
Producto de números reales
La regla de los signos del producto de los números enteros y racionales se sigue manteniendo con los números reales.
Propiedades
1.Interna:
El resultado de multiplicar dos números reales es otro número real.
a • b
2.Asociativa:
El modo de agrupar los factores no varía el resultado. Si a, b y c son números reales cualesquiera, se cumple que:
(a • b) • c = a • (b • c)
(e • ) • = e • ( • )
3.Conmutativa:
El orden de los factores no varía el producto.
a • b = b • a
4. Elemento neutro:
El 1 es el elemento neutro de la multiplicación, porque todo número multiplicado por él da el mismo número.
a •1 = a
• 1 =
5. Elemento inverso:
Un número es inverso del otro si al multiplicarlos obtenemos como resultado el elemento unidad.
6.Distributiva:
El producto de un número por una suma es igual a la suma de los productos de dicho número por cada uno de los sumandos.
a • (b + c) = a • b + a • c
• (e + ) = • e + •
7.Sacar factor común:
Es el proceso inverso a la propiedad distributiva.
Si varios sumandos tienen un factor común, podemos transformar la suma en producto extrayendo dicho factor.
a • b + a • c = a • (b + c)
• e + • = • (e + )
División de números reales
La división de dos números reales se define como el producto del dividendo por el inverso del divisor.
Definición de intervalo
Se llama intervalo al conjunto de números reales comprendidos entre otros dos dados: a y b que se llaman extremos del intervalo.
Intervalo abierto
Intervalo abierto, (a, b), es el conjunto de todos los números reales mayores que a y menores que b.
(a, b) = {x / a < x < b}
Intervalo cerrado
Intervalo cerrado, [a, b], es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b.
[a, b] = {x / a ≤ x ≤ b}
Intervalo semiabierto por la izquierda
Intervalo semiabierto por la izquierda, (a, b], es el conjunto de todos los números reales mayores que a y menores o iguales que b.
(a, b] = {x / a < x ≤ b}
Intervalo semiabierto por la derecha
Intervalo semiabierto por la derecha, [a, b), es el conjunto de todos los números reales mayores o iguales que a y menores que b.
[a, b) = {x / a ≤ x < b}
Cuando queremos nombrar un conjunto de puntos
...