ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Redes Neuronales


Enviado por   •  7 de Diciembre de 2011  •  1.955 Palabras (8 Páginas)  •  1.033 Visitas

Página 1 de 8

Funcionamiento

Las redes neuronales consisten en una simulación de las propiedades observadas en los sistemas neuronales biológicos a través de modelos matemáticos recreados mediante mecanismos artificiales (como un circuito integrado, un ordenador o un conjunto de válvulas). El objetivo es conseguir que las máquinas den respuestas similares a las que es capaz de dar el cerebro que se caracterizan por su generalización y su robustez.

Perceptrón con 2 entradas.

Una red neuronal se compone de unidades llamadas neuronas. Cada neurona recibe una serie de entradas a través de interconexiones y emite una salida. Esta salida viene dada por tres funciones:

Una función de propagación (también conocida como función de excitación), que por lo general consiste en el sumatorio de cada entrada multiplicada por el peso de su interconexión (valor neto). Si el peso es positivo, la conexión se denomina excitatoria; si es negativo, se denomina inhibitoria.

Una función de activación, que modifica a la anterior. Puede no existir, siendo en este caso la salida la misma función de propagación.

Una función de transferencia, que se aplica al valor devuelto por la función de activación. Se utiliza para acotar la salida de la neurona y generalmente viene dada por la interpretación que queramos darle a dichas salidas. Algunas de las más utilizadas son la función sigmoidea (para obtener valores en el intervalo [0,1]) y la tangente hiperbólica (para obtener valores en el intervalo [-1,1]).

[editar]Diseño y programación de una RNA (red neuronal artificial)

Con un paradigma convencional de programación en ingeniería del software, el objetivo del programador es modelar matemáticamente (con distintos grados de formalismo) el problema en cuestión y posteriormente formular una solución (programa) mediante un algoritmo codificado que tenga una serie de propiedades que permitan resolver dicho problema. En contraposición, la aproximación basada en las RNA parte de un conjunto de datos de entrada suficientemente significativo y el objetivo es conseguir que la red aprenda automáticamente las propiedades deseadas. En este sentido, el diseño de la red tiene menos que ver con cuestiones como los flujos de datos y la detección de condiciones, y más que ver con cuestiones tales como la selección del modelo de red, la de las variables a incorporar y el preprocesamiento de la información que formará el conjunto de entrenamiento. Asimismo, el proceso por el que los parámetros de la red se adecuan a la resolución de cada problema no se denomina genéricamente programación sino que se suele denominar entrenamiento neuronal.

Por ejemplo en una red que se va a aplicar al diagnóstico de imágenes médicas; durante la fase de entrenamiento el sistema recibe imágenes de tejidos que se sabe son cancerígenos y tejidos que se sabe son sanos, así como las respectivas clasificaciones de dichas imágenes. Si el entrenamiento es el adecuado, una vez concluido, el sistema podrá recibir imágenes de tejidos no clasificados y obtener su clasificación sano/no sano con un buen grado de seguridad. Las variables de entrada pueden ser desde los puntos individuales de cada imagen hasta un vector de características de las mismas que se puedan incorporar al sistema (por ejemplo, procedencia anatómica del tejido de la imagen o la edad del paciente al que se le extrajo la muestra).

[editar]Estructura

La mayoría de los científicos coinciden en que una RNA es muy diferente en términos de estructura de un cerebro animal. Al igual que el cerebro, una RNA se compone de un conjunto masivamente paralelo de unidades de proceso muy simples y es en las conexiones entre estas unidades donde reside la inteligencia de la red. Sin embargo, en términos de escala, un cerebro es muchísimo mayor que cualquier RNA creada hasta la actualidad, y las neuronas artificiales también son más simples que su contrapartida animal.

Biológicamente, un cerebro aprende mediante la reorganización de las conexiones sinápticas entre las neuronas que lo componen. De la misma manera, las RNA tienen un gran número de procesadores virtuales interconectados que de forma simplificada simulan la funcionalidad de las neuronas biológicas. En esta simulación, la reorganización de las conexiones sinápticas biológicas se modela mediante un mecanismo de pesos, que son ajustados durante la fase de aprendizaje. En una RNA entrenada, el conjunto de los pesos determina el conocimiento de esa RNA y tiene la propiedad de resolver el problema para el que la RNA ha sido entrenada.

Por otra parte, en una RNA, además de los pesos y las conexiones, cada neurona tiene asociada una función matemática denominada función de transferencia. Dicha función genera la señal de salida de la neurona a partir de las señales de entrada. La entrada de la función es la suma de todas las señales de entrada por el peso asociado a la conexión de entrada de la señal. Algunos ejemplos de entradas son la función escalón de Heaviside, la lineal o mixta, la sigmoide y la función gaussiana, recordando que la función de transferencia es la relación entre la señal de salida y la entrada.

[editar]Ventajas

Las redes neuronales artificiales (RNA) tienen muchas ventajas debido a que están basadas en la estructura del sistema nervioso, principalmente el cerebro.

Aprendizaje: Las RNA tienen la habilidad de aprender mediante una etapa que se llama etapa de aprendizaje. Esta consiste en proporcionar a la RNA datos como entrada a su vez que se le indica cuál es la salida (respuesta) esperada.

Auto organización: Una RNA crea su propia representación de la información en su interior, descargando al usuario de esto.

Tolerancia a fallos: Debido a que una RNA almacena la información de forma redundante, ésta puede seguir respondiendo de manera aceptable aun si se daña parcialmente.

Flexibilidad: Una RNA puede manejar cambios no importantes en la información de entrada, como señales con ruido u otros cambios en la entrada (por ejemplo si la información de entrada es la imagen de un objeto, la respuesta correspondiente no sufre cambios si la imagen cambia un poco su brillo o el objeto cambia ligeramente).

Tiempo real: La estructura de una RNA es paralela, por lo cual si esto es implementado con computadoras o en dispositivos electrónicos especiales, se pueden obtener respuestas en tiempo real.

[editar]Tipología de las RNA

[editar]Modelos

Existe una serie de modelos que aparecen en la mayoría de estudios académicos y la bibliografía especializada.

Perceptrón

Adaline

Perceptrón multicapa

Memorias asociativas

Máquina de Boltzmann

Máquina de Cauchy

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com