ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teoria Del Muestreo Del Trabajo


Enviado por   •  9 de Octubre de 2014  •  4.299 Palabras (18 Páginas)  •  349 Visitas

Página 1 de 18

Teoría de las muestras de trabajo

INTRODUCCIÓN

Una parte fundamental para realizar un estudio estadístico de cualquier tipo es obtener unos resultados confiables y que puedan ser aplicables. Como ya se comentó anteriormente, resulta casi imposible o impráctico llevar a cabo algunos estudios sobre toda una población, por lo que la solución es llevar a cabo el estudio basándose en un subconjunto de ésta denominada muestra.

Sin embargo, para que los estudios tengan la validez y confiabilidad buscada es necesario que tal subconjunto de datos, o muestra, posea algunas características específicas que permitan, al final, generalizar los resultados hacia la población en total. Esas características tienen que ver principalmente con el tamaño de la muestra y con la manera de obtenerla.

En las siguientes secciones de esta unidad lo comentaremos.

La Alumna

UNIDAD 1. TEORÍA DE MUESTRAS

En este capítulo se resume la Teoría de Muestras estadística, la cual trata el concepto de estudiar una población desconocida tomándole muestras, y a través del estudio de las mismas poder hacer inferencias acerca de toda la población. Primero se analiza el caso del muestreo aleatorio simple y estratificado, mostrando el manejo de una tabla de números aleatorios. Luego se ven los tipos no-aleatorios en el muestreo y se discute acerca de las ventajas y desventajas de cada uno de los métodos. Se explican los métodos usados en Bioquímica para lograr que las muestras extraídas a los pacientes cumplan los requisitos de aleatoriedad, aunque sea aproximadamente. Lo mismo para el caso de la industria Farmacéutica y para las simulaciones en los muestreos de mercadeo, usadas en el comercio en general. De manera tal de poder aplicar luego los modelos estadísticos que exigen tal requisito. En la Tabla 3, del fascículo de las tablas, se presenta la Tabla Aleatoria, más conocida como: “Random Numbers”.

2. IMPORTANCIA DEL MUESTREO

A lo largo del curso se hacen uso de dos tipos de razonamiento: el deductivo y el inductivo. El primero está relacionado directamente con la teoría de probabilidad, que se aborda en la unidad 4, y que a partir de las características de la población se obtienen las posibles características de una muestra. El segundo tipo de razonamiento se relaciona con la denominada inferencia estadística: utilizar las características de un subconjunto de la población (la muestra) para hacer afirmaciones (inferir) sobre la población en general. Éste será el caso de esta unidad.

El muestro, como ya se mencionó, implica algo de incertidumbre que debe ser aceptada para poder realizar el trabajo, pues aparte de que estudiar una población resulta ser un trabajo en ocasiones demasiado grande, Wonnacott y Wonnacott ofrecen las siguientes razones extras:

• Recursos limitados. Es decir, no existen los recursos humanos, materiales o económicos para realizar el estudio sobre el total de la población. Es como cuando se compra un aparato, un automóvil usado (por ejemplo), que se prueba unos minutos (el encendido, una carrerita, etc.) para ver si funciona correctamente y luego se adquiere, pero no se espera a probarlo toda la vida (encendiéndolo y apagándolo o, simplemente, dejándolo encendida) antes de realizar la adquisición.

• Escasez. Es el caso en que se dispone de una sola muestra. Por ejemplo, para el estudio paleontológico de los dinosaurios (el T. Rex por ejemplo) sería muy bueno contar con, al menos, muchos restos fósiles y así realizar tales investigaciones; sin embargo, se cuenta sólo con una docena de esqueletos fosilizados (casi todos incompletos) de esas criaturas en todo el mundo.

• Pruebas destructivas. Es el caso en el que realizar el estudio sobre toda la población llevaría a la destrucción misma de la población. Por ejemplo, si se quisiese saber el conteo exacto de hemoglobina de una persona habría que extraerle toda la sangre.

• El muestreo puede ser más exacto. Esto es en el caso en el que el estudio sobre la población total puede causar errores por su tamaño o, en el caso de los censos, que sea necesario utilizar personal no lo suficientemente capacitado; mientras que, por otro lado, el estudio sobre una muestra podría ser realizada con menos personal pero más capacitado.

Ya que hemos mencionado la necesidad de realizar muestras, continuaremos con algunas características que deben tener éstas para que, realmente, se puedan realizar inferencias (inducciones) sobre ellas hacia la población total.

3. TAMAÑO DE LAS MUESTRAS

Para calcular el tamaño de una muestra hay que tomar en cuenta tres factores:

1. El porcentaje de confianza con el cual se quiere generalizar los datos desde la muestra hacia la población total.

2. El porcentaje de error que se pretende aceptar al momento de hacer la generalización.

3. El nivel de variabilidad que se calcula para comprobar la hipótesis.

• La confianza o el porcentaje de confianza es el porcentaje de seguridad que existe para generalizar los resultados obtenidos. Esto quiere decir que un porcentaje del 100% equivale a decir que no existe ninguna duda para generalizar tales resultados, pero también implica estudiar a la totalidad de los casos de la población.

Para evitar un costo muy alto para el estudio o debido a que en ocasiones llega a ser prácticamente imposible el estudio de todos los casos, entonces se busca un porcentaje de confianza menor. Comúnmente en las investigaciones sociales se busca un 95%.

• El error o porcentaje de error equivale a elegir una probabilidad de aceptar una hipótesis que sea falsa como si fuera verdadera, o la inversa: rechazar a hipótesis verdadera por considerarla falsa. Al igual que en el caso de la confianza, si se quiere eliminar el riesgo del error y considerarlo como 0%, entonces la muestra es del mismo tamaño que la población, por lo que conviene correr un cierto riesgo de equivocarse.

Comúnmente se aceptan entre el 4% y el 6% como error, tomando en cuenta de que no son complementarios la confianza y el error.

• La variabilidad es la probabilidad (o porcentaje) con el que se aceptó y se rechazó la hipótesis que se quiere investigar en alguna investigación anterior o en un ensayo previo a la investigación actual. El porcentaje con que se aceptó tal hipótesis se denomina variabilidad positiva y se denota por p, y el porcentaje con el que se rechazó se la hipótesis es la variabilidad negativa, denotada por q.

Hay que considerar que p y q son complementarios, es decir, que su suma es igual a la unidad: p+q=1. Además, cuando se habla de la máxima variabilidad, en el caso de no existir antecedentes sobre la investigación (no hay otras o no se pudo aplicar una prueba previa), entonces los valores de variabilidad es p=q=0.5.

...

Descargar como (para miembros actualizados) txt (26 Kb)
Leer 17 páginas más »
Disponible sólo en Clubensayos.com