ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Termodinamica


Enviado por   •  22 de Abril de 2014  •  1.824 Palabras (8 Páginas)  •  154 Visitas

Página 1 de 8

Termodinámica.

La termodinámica es la rama de la física que describe los estados de equilibrio a nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.

Los estados de equilibrio son estudiados y definidos por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema, o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden ser tratadas por medio de la termodinámica.

La termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio, definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas». Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica -todas las leyes y variables termodinámicas-, se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden ser descritas consistentemente empleando la teoría termodinámica. Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc), el sistema tenderá a evolucionar de un estado de equilibrio a otro; comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes.

Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico. El punto de partida para la mayor parte de las consideraciones termodinámicas son los que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que sólo puede hacerse de una determinada manera. También se introduce una magnitud llamada entropía, que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro. Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.

Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de ramas de la ciencia y de la ingeniería, tales como motores, cambios de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros.

Conceptos básicos.

Denominamos estado de equilibrio de un sistema cuando las variables macroscópicas presión p, volumen V, y temperatura T, no cambian. El estado de equilibrio es dinámico en el sentido de que los constituyentes del sistema se mueven continuamente.

El estado del sistema se representa por un punto en un diagrama p-V. Podemos llevar al sistema desde un estado inicial a otro final a través de una sucesión de estados de equilibrio.

Se denomina ecuación de estado a la relación que existe entre las variables p, V, y T. La ecuación de estado más sencilla es la de un gas ideal pV=nRT, donde n representa el número de moles, y R la constante de los gasesR=0.082 atm·l/(K mol)=8.3143 J/(K mol).

Se denomina energía interna del sistema a la suma de las energías de todas sus partículas. En un gas ideal las moléculas solamente tienen energía cinética, los choques entre las moléculas se suponen perfectamente elásticos, la energía interna solamente depende de la temperatura.

Trabajo mecánico hecho por o sobre el sistema.

Consideremos, por ejemplo, un gas dentro de un cilindro. Las moléculas del gas chocan contra las paredes cambiando la dirección de su velocidad, o de su momento lineal. El efecto del gran número de colisiones que tienen lugar en la unidad de tiempo, se puede representar por una fuerza F que actúa sobre toda la superficie de la pared.

Si una de las paredes es un émbolo móvil de área A y éste se desplaza dx, el intercambio de energía del sistema con el exterior puede expresarse como el trabajo realizado por la fuerza F a lo largo del desplazamiento dx.

dW=-Fdx=-pAdx=-pdV

Siendo dV el cambio del volumen del gas.

El signo menos indica que si el sistema realiza trabajo (incrementa su volumen) su energía interna disminuye, pero si se realiza trabajo sobre el sistema (disminuye su volumen) su energía interna aumenta.

El trabajo total realizado cuando el sistema pasa del estado A cuyo volumen es VA al estado B cuyo volumen es VB.

El calor

El calor no es una nueva forma de energía, es el nombre dado a una transferencia de energía de tipo especial en el que intervienen gran número de partículas. Se denomina calor a la energía intercambiada entre un sistema y el medio

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com