Caida Libre Fisica Fundamental
Enviado por skrillexDED • 21 de Abril de 2014 • 1.633 Palabras (7 Páginas) • 638 Visitas
CAIDA LIBRE…
La caída libre es un caso particular del movimiento rectilíneo uniformemente acelerado, en el cual la aceleración es siendo
En consecuencia, las ecuaciones del movimiento serán:
Para el caso de la caída libre, la velocidad inicial es cero; la propia frase lo indica: se deja caer el cuerpo en caída libre.
Como , queda
Por otra parte, para el espacio, o altura a la que se encuentra el cuerpo:
La representación gráfica del movimiento será:
Lanzamiento vertical
Para el lanzamiento vertical nos encontramos con que es positiva, y así se mantendrá aún cuando su módulo llegue a valer cero. Esto ocurrirá en el punto más alto de la trayectoria, en el cual la , pues pasará de valores positivos a negativos. En ese punto de la altura máxima, el móvil se encontrará parado durante un instante, después del cual comenzará caer. Durante todo el movimiento la aceleración que sufrirá la partícula será la de la gravedad, la cual siempre tiene el mismo sentido, hacia abajo y, por convenio, negativo.
La representación gráfica del movimiento será:
Para , la tangente a la gráfica es horizontal, se corresponde con la altura máxima y con el instante en que la gráfica se hace cero.
http://www.wikillerato.org/Ca%C3%ADda_libre_y_lanzamiento_vertical.html
CAÍDA LIBRE Y TIRO VERTICAL
La caída libre y el tiro vertical en el vacío, son dos casos particulares de M.R.U.V. puesto que en ellos la aceleración es constante: es la llamada aceleración de la gravedad (g = 9,8 m/s2).
En la siguiente aplicación interactiva se puede observar las características de estos movimientos y las representaciones gráficas de posición y velocidad en función del tiempo:
Estos movimientos se conocen generalmente como “movimientos verticales en el vacío”. Que se realicen en el vacío implica que no hay ningún tipo de resistencia al movimiento, como fuerzas de fricción o rozamientos, que serían comunes en movimientos en el aire. La única fuerza que está actuando es el peso del cuerpo, la cual determina la existencia de la aceleración de la gravedad. Si bien esta aceleración no es constante en todos los puntos del planeta tomaremos por el momento el valor de 9,8 m/s2 y más adelante, en Dinámica discutiremos sus variaciones.
En el siguiente cuadro deducimos las fórmulas de estos movimientos a partir de las del M.R.U.V. e indicamos la ubicación de los ejes de referencia para que tengan validez estas fórmulas.
En el cuadro precedente se muestra como a partir de las fórmulas ya conocidas de M.R.U.V. pueden deducirse fácilmente las de la Caída Libre y las del Tiro Vertical.
En efecto, en la Caída Libre el cuerpo se deja caer libremente desde el reposo, sin arrojarlo para abajo, o sea con velocidad inicial cero. El movimiento es entonces acelerado.
Se toma como eje de referencia el mostrado debajo, el cual tiene su origen en la posición inicial del cuerpo (en el punto más alto) y crece hacia abajo.
La aceleración de la gravedad se toma como positiva pues va en el sentido de crecimiento del eje y se reemplaza por “g”.
El desplazamiento del móvil “Dx” se reemplaza por “Dh”, recordando entonces que este “Dh” es la altura caída por el móvil en un cierto instante y no la altura a que está del suelo en dicho instante.
Las velocidades comenzarán a ser positivas luego del instante inicial, pues serán vectores dirigidos hacia abajo.
El Tiro Vertical, en cambio es un movimiento donde al cuerpo se lo arroja hacia arriba con una velocidad inicial Vi. En el camino de subida el movimiento es retardado pues la aceleración es hacia abajo y la velocidad hacia arriba. El móvil va disminuyendo su velocidad hasta detenerse en el punto más alto del trayecto. Luego comienza a bajar por efecto de la aceleración de la gravedad que en todo momento sigue “atrayéndolo” hacia abajo. Esta segunda parte del movimiento constituye una caída libre, pero no es necesario cambiar de fórmulas y usar las de la caída libre, pues como el movimiento es de aceleración constante (la de la gravedad “g”) con las mismas fórmulas del Tiro Vertical se explica esta segunda fase del movimiento. Para el Tiro Vertical se usa un sistema de referencia que tiene el origen en la posición inicial del cuerpo, que puede ser el suelo o un determinado nivel de referencia.
El eje crece hacia arriba, de manera que la velocidad inicial se toma como positiva; la aceleración de la gravedad se toma como negativa reemplazando “a” por “-g” en las fórmulas. Se entiende entonces que el símbolo “g” equivale a + 9,8 m/s2.
El desplazamiento “Dx” se sustituye por “Dh” que refleja la altura subida por el cuerpo en un cierto instante. En este caso sí el “Dh” es igual a la altura a que está el móvil del suelo en un cierto instante (si es que dicho móvil partió del suelo).
Luego que el móvil alcanzó su altura máxima, comienza a descender haciéndose negativa su velocidad (pues es hacia abajo). Ahora el movimiento es acelerado hacia abajo.
Para hallar la altura máxima que alcanza un móvil con Tiro Vertical, sabiendo la velocidad inicial con que fue arrojado, se puede
...