Calculo Infinitesimal
Enviado por alfredo931126 • 8 de Septiembre de 2011 • 1.103 Palabras (5 Páginas) • 1.548 Visitas
Cálculo infinitesimal:
El cálculo infinitesimal, llamado por brevedad "cálculo", tiene su origen en la antigua geometría griega. Demócrito calculó el volumen de pirámides y conos considerándolos formados por un número infinito de secciones de grosor infinitesimal (infinitamente pequeño). Eudoxo y Arquímedes utilizaron el "método de agotamiento" o exhaución para encontrar el área de un círculo con la exactitud finita requerida mediante el uso de polígonos regulares inscritos de cada vez mayor número de lados. En el periodo tardío de Grecia, el neoplatónico Pappus de Alejandría hizo contribuciones sobresalientes en este ámbito. Sin embargo, las dificultades para trabajar con números irracionales y las paradojas de Zenón de Elea impidieron formular una teoría sistemática del cálculo en el periodo antiguo.
En el siglo XVII, Cavalieri y Torricelli ampliaron el uso de los infinitesimales, Descartes y Fermat utilizaron el álgebra para encontrar el área y las tangentes (integración y Derivación en términos modernos). Fermat y Barrow tenían la certeza de que ambos cálculos estaban relacionados, aunque fueron Newton (hacia 1660), en Inglaterra y Leibniz en Alemania (hacia 1670) quienes demostraron que los problemas del área y la tangente son inversos, lo que se conoce como teorema fundamental del cálculo.
El descubrimiento de Newton, a partir de su teoría de la gravitación universal, fue anterior al de Leibniz, pero el retraso en su publicación aún provoca controversias sobre quién de los dos fue el primero. Newton utilizó el cálculo en mecánica en el marco de su tratado "Principios matemáticos de filosofía natural", obra científica por excelencia, llamando a su método de "fluxiones". Leibniz utilizó el cálculo en el problema de la tangente a una curva en un punto, como límite de aproximaciones sucesivas, dando un carácter más filosófico a su discurso. Sin embargo, terminó por adoptarse la notación de Leibniz por su versatilidad.
En el siglo XVIII aumentó considerablemente el número de aplicaciones del cálculo, pero el uso impreciso de las cantidades infinitas e infinitesimales, así como la intuición geométrica, causaban todavía confusión y duda sobre sus fundamentos. De hecho, la noción de límite, central en el estudio del cálculo, era aun vaga e imprecisa en ese entonces. Uno de sus críticos más notables fue el filósofo George Berkeley.
En el siglo XIX el trabajo de los analistas matemáticos sustituyeron esas vaguedades por fundamentos sólidos basados en cantidades finitas: Bolzano y Cauchy definieron con precisión los conceptos de límite en términos de épsilon_delta y de derivada, Cauchy y Riemann hicieron lo propio con las integrales, y Dedekind y Weierstrass con los números reales. Fue el periodo de la fundamentación del cálculo. Por ejemplo, se supo que las funciones diferenciables son continuas y que las funciones continuas son integrables, aunque los recíprocos son falsos. En el siglo XX, el análisis no convencional, legitimó el uso de los infinitesimales, al mismo tiempo que la aparición de las Computadoras ha incrementado las aplicaciones y velocidad del cálculo.
Actualmente, el cálculo infinitesimal tiene un doble aspecto: por un lado, se ha consolidado su carácter disciplinario en la formación de la sociedad culta del conocimiento, destacando en este ámbito textos propios de la disciplina como el de Louis Leithold, el de Earl W. Swokowski o el de James Stewart entre muchos otros; por otro su desarrollo como disciplina científica que ha desembocado en ámbitos tan especializados como el cálculo fraccional, la teoría de funciones analíticas de variable compleja o el análisis matemático. El éxito del cálculo ha sido extendido con el tiempo a las ecuaciones diferenciales, al cálculo de vectores, al cálculo de variaciones, al análisis complejo y a las topología algebraica y topología diferencial entre muchas otras ramas.
El desarrollo y uso del cálculo ha tenido
...