ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Clasificación de funciones


Enviado por   •  29 de Abril de 2015  •  1.380 Palabras (6 Páginas)  •  125 Visitas

Página 1 de 6

Clasificación de funciones

Funciones algebraicas

En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.

Las funciones algebraicas pueden ser:

Funciones explícitas

Si se pueden obtener las imágenes de x por simple sustitución.

f(x) = 5x − 2

Funciones implícitas

Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.

5x − y − 2 = 0

Funciones polinómicas

Son las funciones que vienen definidas por un polinomio.

f(x) = a

0

+ a

1

x + a

2

x² + a

2

x³ +··· + a

n

x

n

Su dominio es , es decir, cualquier número real tiene imagen.

1

Funciones constantes

El criterio viene dado por un número real.

f(x)= k

La gráfica es una recta horizontal paralela a al eje de abscisas.

Funciones polinómica de primer grado

f(x) = mx +n

Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.

Las principales son:

Función afín.

Función lineal.

Función identidad.

Funciones cuadráticas

f(x) = ax² + bx +c

Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

Funciones a trozos

Son funciones definidas por distintos criterios, según los intervalos que se consideren.

Funciones en valor absoluto.

Función parte entera de x.

Función mantisa.

Función signo.

Funciones racionales

El criterio viene dado por un cociente entre polinomios:

2

El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.

Funciones radicales

El criterio viene dado por la variable x bajo el signo radical.

El dominio de una función irracional de índice impar es R.

El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

Funciones trascendentes

La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.

Función exponencial

Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia a

x

se llama función exponencial de base a y exponente x.

Funciones logarítmicas

La función logarítmica en base a es la función inversa de la exponencial en base a.

Función seno

f(x) = sen x

Función coseno

f(x) = cos x

Función tangente

f(x) = tg x

Funciones trigonométricas

Función cosecante

f(x) = cosec x

3

Función secante

f(x) = sec x

Función cotangente

f(x) = cotg x

Funciones constantes

La función constante es del tipo:

y = n

El criterio viene dado por un número real.

La pendiente es 0.

La gráfica es una recta horizontal paralela a al eje de abscisas.

Rectas verticales

Las rectas paralelas al eje de ordenadas no son funciones, ya que un valor de x tiene infinitas imágenes y para que sea función sólo puede tener una. Son del tipo:

x = K

4

La función lineal es del tipo:

y = mx

Función lineal

Su gráfica es una línea recta que pasa por el origen de coordenadas.

y = 2x

x 0 1 2 3 4

y = 2x 0 2 4 6 8

m es la pendiente de la recta.

Pendiente

La pendiente es la inclinación de la recta con respecto al eje de abscisas.

Si m > 0 la función es creciente y el ángulo que forma la recta con la parte positiva del eje OX es agudo.

5

Si m <

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com