ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Datos Agrupados


Enviado por   •  22 de Agosto de 2011  •  1.429 Palabras (6 Páginas)  •  1.775 Visitas

Página 1 de 6

Medidas de posición para datos agrupados y no agrupados: cuartiles, deciles y percentiles

1.

2.

3. Cuantiles

4. Cuartiles

5. Deciles

6. Centiles o percentiles

7. Ejemplo

8. Bibliografía

1. Las Medidas de Posición, también conocidas como Otras Medidas de Dispersión, son otras medidas o métodos que resultan ser más prácticos para precisar ciertas situaciones en las que se busca describir la variación o dispersión en un conjunto de datos.

2. INTRODUCCIÓN

3. CUANTILES

Los cuantiles son medidas de posición que se determinan mediante un método que determina la ubicación de los valores que dividen un conjunto de observaciones en partes iguales.

Los cuantiles son los valores de la distribución que la dividen en partes iguales, es decir, en intervalos que comprenden el mismo número de valores. Cuando la distribución contiene un número alto de intervalos o de marcas y se requiere obtener un promedio de una parte de ella, se puede dividir la distribución en cuatro, en diez o en cien partes.

Los más usados son los cuartiles, cuando dividen la distribución en cuatro partes; los deciles, cuando dividen la distribución en diez partes y los centiles o percentiles, cuando dividen la distribución en cien partes. Los cuartiles, como los deciles y los percentiles, son en cierta forma una extensión de la mediana.

Para algunos valores u , se dan nombres particulares a los cuantiles, Q (u):

u Q(u)

0.5 Mediana

0.25, 0.75 Cuartiles

0.1, ... , 0.99 Deciles

0.01, ..., 0.99 Centiles

CUARTILES

Los cuartiles son los tres valores que dividen al conjunto de datos ordenados en cuatro partes porcentualmente iguales.

Hay tres cuartiles denotados usualmente Q1, Q2, Q3. El segundo cuartil es precisamente la mediana. El primer cuartil, es el valor en el cual o por debajo del cual queda un cuarto (25%) de todos los valores de la sucesión (ordenada); el tercer cuartil, es el valor en el cual o por debajo del cual quedan las tres cuartas partes (75%) de los datos.

Datos Agrupados

Como los cuartiles adquieren su mayor importancia cuando contamos un número grande de datos y tenemos en cuenta que en estos casos generalmente los datos son resumidos en una tabla de frecuencia. La fórmula para el cálculo de los cuartiles cuando se trata de datos agrupados es la siguiente:

k= 1,2,3

Donde:

Lk = Límite real inferior de la clase del cuartil k

n = Número de datos

Fk = Frecuencia acumulada de la clase que antecede a la clase del cuartil k.

fk = Frecuencia de la clase del cuartil k

c = Longitud del intervalo de la clase del cuartil k

Si se desea calcular cada cuartil individualmente, mediante otra fórmula se tiene lo siguiente:

• El primer cuartil Q1, es el menor valor que es mayor que una cuarta parte de los datos; es decir, aquel valor de la variable que supera 25% de las observaciones y es superado por el 75% de las observaciones.

Fórmula de Q1, para series de Datos agrupados:

Donde:

L1 = limite inferior de la clase que lo contiene

P = valor que representa la posición de la medida

f1 = la frecuencia de la clase que contiene la medida solicitada.

Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.

Ic = intervalo de clase

• El segundo cuartil Q2, (coincide, es idéntico o similar a la mediana, Q2 = Md), es el menor valor que es mayor que la mitad de los datos, es decir el 50% de las observaciones son mayores que la mediana y el 50% son menores.

Fórmula de Q2, para series de Datos agrupados:

Donde:

L1 = limite inferior de la clase que lo contiene

P = valor que representa la posición de la medida

f1 = la frecuencia de la clase que contiene la medida solicitada.

Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.

Ic = intervalo de clase

• El tercer cuartil Q3, es el menor valor que es mayor que tres cuartas partes de los datos, es decir aquel valor de la variable que supera al 75% y es superado por el 25% de las observaciones.

Fórmula de Q3, para series de Datos agrupados:

Donde:

L1 = limite inferior de la clase que lo contiene

P = valor que representa la posición de la medida

f1 = la frecuencia de la clase que contiene la medida solicitada.

Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.

Ic = intervalo de clase.

Otra manera de verlo es partir de que todas las medidas no son sino casos particulares del percentil, ya que el primer cuartil es el 25% percentil y el tercer cuartil 75% percentil.

Para Datos No Agrupados

Si se tienen una serie de valores X1, X2, X3 ... Xn, se localiza mediante las siguientes fórmulas:

- El primer cuartil:

Cuando n es par:

Cuando n es impar:

• Para el tercer cuartil

Cuando n es par:

Cuando n es impar:

DECILES

Los

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com