Diferentes Tipos De Planes En Un Inventario
Enviado por monche92 • 30 de Agosto de 2014 • 8.770 Palabras (36 Páginas) • 302 Visitas
ÉSTRADA ANDRES MONSERRAT
VEGA OLVERA JUAN CARLOS
ING INDUSTRIAL 4B
EJERCICIO REGRESION SIMPLE.
En un estudio realizado por el seguro social se pretende saber que tanto depende el peso respecto a la estatura ya que las personas toman como pretexto la estatura para decir que están con sobre peso u obesos, para esto se tiene los siguientes datos.
ESTATURA (cm) - x PESO (kg) - y
170 63
155 50
168 65
152 59
173 53
170 52
164 80
158 52
165 65
170 73
170 73
185 95
170 58
172 72
177 185
180 73
170 95
172 65
180 70
176 62
178 70
180 125
169 85
165 62
165 74
183 87
160 50
159 60
170 90
175 71
172 75
170 63
176 90
160 49
168 66
169 70
170 60
163 49
164 70
153 54
155 49
155 67
168 59
FORMULAS
PESO (Y) ESTATURA (X)
63 170 1.53488372 -8.046512 -12.3504597 2.355868037
50 155 -13.465116 -21.04651 283.393726 181.3093564
65 168 -0.4651163 -6.046512 2.81233099 0.216333153
59 152 -16.465116 -12.04651 198.347215 271.1000541
53 173 4.53488372 -18.04651 -81.8388318 20.56517036
52 170 1.53488372 -19.04651 -29.2341806 2.355868037
80 164 -4.4651163 8.9534884 -39.9783667 19.93726339
52 158 -10.465116 -19.04651 199.323959 109.5186587
65 165 -3.4651163 -6.046512 20.9518659 12.00703083
73 170 1.53488372 1.9534884 2.9983775 2.355868037
73 170 1.53488372 1.9534884 2.9983775 2.355868037
95 185 16.5348837 23.953488 396.068145 273.4023797
58 170 1.53488372 -13.04651 -20.0248783 2.355868037
72 172 3.53488372 0.9534884 3.37047052 12.49540292
185 177 8.53488372 113.95349 972.579773 72.84424013
73 180 11.5348837 1.9534884 22.5332612 133.0535425
95 170 1.53488372 23.953488 36.7658194 2.355868037
65 172 3.53488372 -6.046512 -21.3737155 12.49540292
70 180 11.5348837 -1.046512 -12.0713899 133.0535425
62 176 7.53488372 -9.046512 -68.1644132 56.77447269
70 178 9.53488372 -1.046512 -9.97836668 90.91400757
125 180 11.5348837 53.953488 622.347215 133.0535425
85 169 0.53488372 13.953488 7.46349378 0.286100595
62 165 -3.4651163 -9.046512 31.3472147 12.00703083
74 165 -3.4651163 2.9534884 -10.2341806 12.00703083
87 183 14.5348837 15.953488 231.882098 211.2628448
50 160 -8.4651163 -21.04651 178.161168 71.65819362
60 159 -9.4651163 -11.04651 104.556517 89.58842618
90 170 1.53488372 18.953488 29.0914008 2.355868037
71 175 6.53488372 -0.046512 -0.30394808 42.70470525
75 172 3.53488372 3.9534884 13.9751217 12.49540292
63 170 1.53488372 -8.046512 -12.3504597 2.355868037
90 176 7.53488372 18.953488 142.812331 56.77447269
49 160 -8.4651163 -22.04651 186.626284 71.65819362
66 168 -0.4651163 -5.046512 2.34721471 0.216333153
70 169 0.53488372 -1.046512 -0.55976203 0.286100595
60 170 1.53488372 -11.04651 -16.9551109 2.355868037
49 163 -5.4651163 -22.04651 120.48675 29.86749594
70 164 -4.4651163 -1.046512 4.67279611 19.93726339
54 153 -15.465116 -17.04651 263.626284 239.1698215
49 155 -13.465116 -22.04651 296.858843 181.3093564
67 155 -13.465116 -4.046512 54.4867496 181.3093564
59 168 -0.4651163 -12.04651 5.60302866 0.216333153
PROMEDIO PROMEDIO
71.04651163 168.4651163 -3.411E-13 -1.56E-13 4103.06977 2786.697674
β= 1.472377074
α=ȳ-βẋ -176.9976633
Encontremos los valores de
Quedando la ecuación de estimación:
ŷ
ŷ - ȳ (ŷ - ȳ)^2
167.040067 2.9599325 8.76120067 2.35586804 -1.42505 2.0307642
164.737749 -9.737749 94.8237496 181.309356 -3.72737 13.893269
167.39427 0.6057297 0.36690842 0.21633315 -1.07085 1.146711
166.331662 -14.33166 205.396527 271.100054 -2.13345 4.5516285
165.269053 7.730947 59.7675412 20.5651704 -3.19606 10.21482
165.091952 4.9080484 24.0889393 2.35586804 -3.37316 11.37824
170.050792 -6.050792 36.6120838 19.9372634 1.585676 2.5143675
165.091952 -7.091952 50.2957772 109.518659 -3.37316 11.37824
167.39427 -2.39427 5.73253047 12.0070308 -1.07085 1.146711
168.811082 1.1889181 1.41352627 2.35586804 0.345966 0.1196922
168.811082 1.1889181 1.41352627 2.35586804 0.345966 0.1196922
172.707314 12.292686 151.110138 273.40238 4.242197 17.996238
166.15456 3.8454398 14.787407 2.35586804 -2.31056 5.3386692
168.63398 3.3660196 11.3300876 12.4954029 0.168864 0.0285151
188.646444 -11.64644 135.639648 72.8442401 20.18133 407.28597
168.811082 11.188918 125.191888 133.053542 0.345966 0.1196922
172.707314 -2.707314 7.32954718 2.35586804 4.242197 17.996238
167.39427 4.6057297 21.2127457 12.4954029 -1.07085 1.146711
168.279778 11.720222 137.363614 133.053542 -0.18534 0.0343504
166.862966 9.137034 83.4853901 56.7744727 -1.60215 2.5668855
168.279778 9.7202224 94.4827243 90.9140076 -0.18534 0.0343504
178.020357 1.9796431 3.91898661 133.053542 9.555241 91.302624
170.936299 -1.936299 3.74925463 0.28610059 2.471183 6.1067451
166.862966 -1.862966 3.47064236 12.0070308 -1.60215 2.5668855
168.988183 -3.988183 15.9056063 12.0070308 0.523067 0.2735991
171.290502 11.709498 137.112341 211.262845 2.825386 7.982805
164.737749 -4.737749 22.4462627 71.6581936 -3.72737 13.893269
166.508763 -7.508763 56.3815237 89.5884262 -1.95635 3.8273177
171.821806 -1.821806 3.31897866 2.35586804 3.35669 11.267369
168.456879 6.543121 42.8124324 42.7047052 -0.00824 6.785E-05
169.165285 2.8347152 8.0356104 12.4954029 0.700168 0.4902359
167.040067 2.9599325 8.76120067 2.35586804 -1.42505 2.0307642
171.821806 4.1781936 17.4573015 56.7744727 3.35669 11.267369
164.560647 -4.560647 20.7995033 71.6581936 -3.90447 15.244878
167.571372 0.4286282 0.18372215 0.21633315 -0.89374 0.7987792
168.279778 0.7202224 0.51872036 0.28610059 -0.18534 0.0343504
...