Dilatacion Lineal
Enviado por casvi • 8 de Septiembre de 2012 • 3.007 Palabras (13 Páginas) • 1.791 Visitas
DILATACIÓN LINEAL
La dilatación lineal es aquella en la cual predomina la variación en una única dimensión, o sea, en el ancho, largo o altura del cuerpo.
Para estudiar este tipo de dilatación, imaginemos una barra metálica de longitud inicial L0y temperatura θ0.
Si calentamos esa barra hasta que la misma sufra una variación de temperatura Δθ, notaremos que su longitud pasa a ser igual a L (conforme podemos ver en la siguiente figura):
Matemáticamente podemos decir que la dilatación es:
Pero si aumentamos el calentamiento, de forma de doblar la variación de temperatura, o sea, 2Δθ, entonces observaremos que la dilatación será el doble (2 ΔL).
Avisos Google
Podemos concluir que la dilatación es directamente proporcional a la variación de temperatura.
Imaginemos dos barras del mismo material, pero de longitudes diferentes. Cuando calentamos estas barras, notaremos que la mayor se dilatará más que la menor.
Podemos concluir que, la dilatación es directamente proporcional al larco inicial de las barras.
Cuando calentamos igualmente dos barras de igual longitud, pero de materiales diferentes, notaremos que la dilatación será diferentes en las barras.
Podemos concluir que la dilatación depende del material (sustancia) de la barra.
De los ítems anteriores podemos escribir que la dilatación lineal es:
Donde:
L0 = longitud inicial.
L = longitud final.
ΔL = dilatación (DL > 0) ó contracción (DL < 0)
Δθ = θ0 – θ (variación de la temperatura)
α = es una constante de proporcionalidad característica del material que constituye la barra, denominada como coeficiente de dilatación térmica lineal.
De las ecuaciones I y II tendremos:
La ecuación de la longitud final L = L0 (1 + α . Δθ), corresponde a una ecuación de 1ºgrado y por tanto, su gráfico será una recta inclinada, donde:
L = f (θ) ==> L = L0 (1 + α . Δθ).
Observaciones:
Todos Los coeficientes de dilatación sean α, β ou γ, tienen como unidad:
(temperatura)-1 ==> ºC-1
DILATACIÓN SUPERFICIAL
Es aquella en que predomina la variación en dos dimensiones, o sea, la variación del área del cuerpo
Para estudiar este tipo de dilatación, podemos imaginar una placa metálica de área inicialS0 y temperatura inicial θ0. Si la calentáramos hasta la temperatura final θ, su área pasará a tener un valor final igual a S.
La dilatación superficial ocurre de forma análoga a la de la dilatación lineal; por tanto podemos obtener las siguientes ecuaciones:
Observaciones:
Todos Los coeficientes de dilatación sean α, β ou γ, tienen como unidad:
(temperatura)-1 ==> ºC-1
DILATACIÓN VOLUMÉTRICA
Es aquella en que predomina la variación en tres dimensiones, o sea, la variación del volumen del cuerpo.
Para estudiar este tipo de dilatación, podemos imaginar un cubo metálico de volumen inicial V0 y la temperatura inicial θ0. Si lo calentamos hasta la temperatura final, su volumen pasará a tener un valor final igual a V.
La dilatación volumétrica ocurrió de forma análoga a la de la dilatación lineal; por tanto podemos obtener las siguientes ecuaciones:
Observaciones:
Todos Los coeficientes de dilatación sean α, β ou γ, tienen como unidad:
(temperatura)-1 ==> ºC-1
Conducción de calor
La conducción de calor es un mecanismo de transferencia de energía térmica entre dos sistemas basado en el contacto directo de sus partículas sin flujo neto de materia y que tiende a igualar la temperatura dentro de un cuerpo o entre diferentes cuerpos en contacto por medio de transferencia de energía cinética de las partículas.
El principal parámetro dependiente del material que regula la conducción de calor en los materiales es la conductividad térmica, unapropiedad física que mide la capacidad de conducción de calor o capacidad de una substancia de transferir el movimiento cinético de sus moléculas a sus propias moléculas adyacentes o a otras substancias con las que está en contacto. La inversa de la conductividad térmica es la resistividad térmica, que es la capacidad de los materiales para oponerse al paso del calor.
Convección
La convección es una de las tres formas de transferencia de calor y se caracteriza porque se produce por intermedio de un fluido (líquido o gas) que transporta el calor entre zonas con diferentes temperaturas. La convección se produce únicamente por medio de materiales fluidos. Lo que se llama convección en sí, es el transporte de calor por medio del movimiento del fluido, por ejemplo: al trasegar el fluido por medio de bombas o al calentar agua en una cacerola, la que está en contacto con la parte de abajo de la cacerola se mueve hacia arriba, mientras que el agua que está en la superficie, desciende, ocupando el lugar que dejó la caliente.
La transferencia de calor implica el transporte de calor en un volumen y la mezcla de elementos macroscópicos de porciones calientes y frías de un gas o un líquido. Se incluye también el intercambio de energía entre una superficie sólida y un fluido o por medio de una bomba, unventilador u otro dispositivo mecánico (convección mecánica, forzada o asistida).
En la transferencia de calor libre o natural un fluido es más caliente o más frío y en contacto con una superficie sólida, causa una circulación debido a las diferencias de densidades que resultan del gradiente de temperaturas en el fluido.
La transferencia de calor por convección se expresa con la Ley del Enfriamiento de Newton:
Donde es el coeficiente de convección (ó coeficiente de película), es el área del cuerpo en contacto con el fluido, es la temperatura en la superficie del cuerpo y es latemperatura del fluido lejos del cuerpo.
Radicación
Radiación térmica es la radiación emitida por un cuerpo como consecuencia de su temperatura y depende además de una propiedad superficial llamada emitancia. Todo cuerpo emite radiación hacia su entorno y absorbe radiación de este cuerpo
La radiación infrarroja de un radiador hogareño común o de un calefactor eléctrico es un ejemplo de radiación térmica, al igual que la luz emitida por una lámpara incandescente. La radiación térmica se produce cuando el calor del movimiento de partículas cargadas dentro de los átomos se convierte en radiación electromagnética.
La
...