ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ECUACION DE LA PARABOLA CON VERTICE EN EL ORIGEN


Enviado por   •  22 de Noviembre de 2013  •  431 Palabras (2 Páginas)  •  772 Visitas

Página 1 de 2

ECUACION DE LA PARABOLA CON VERTICE EN EL ORIGEN

En matemática, la parábola (del griego παραβολή) es una sección cónica generada al cortar un cono recto con un plano paralelo a la directriz.

Se define también como el lugar geométrico de los puntos que equidistan de una recta (eje o directriz) y un punto fijo llamado foco.

Si el vertice está en el origen, Entonces Las Formulas son:

x² = 4*p*y

x² = -4*p*y

y² = 4*p*x

y² = -4*p*x

Y = 4px

Centro C(0,0)

Es Horizontal

Se abre hacia la derecha (porque es positivo)

Y = -4px

Centro C(0,0)

Es Horizontal

Se abre hacia la izquierda (porque es negativo)

Observación

Mientras mayor sea el número del parámetro (P), más abierta estará la parábola, pero mientras el número sea menor, más cerrada será la parábola.

Ejemplo 1

Halla la ecuacíón de la parábola con Foco (-3,0) y vértice en el origen.

Solución 1

El eje focal será el eje de abscisas y el parámetro P = -3 es la abscisa del foco.

Datos:

Y = 4px

p = -3

Entonces:

Y = 4(-3)x

Y = -12x

2. Ecuación de la parábola con vertice en el origen y eje focal sobre Y(Vertical)

X = 4py

Centro C(0,0)

Es Vertical

Se abre hacia arriba (porque es positivo)

X = -4py

Centro C(0,0)

Es Vertical

Se abre hacia abajo(porque es negativo)

Observación

Mientras mayor sea el número del parámetro (P), más abierta estará la parábola, pero mientras el número sea menor, más cerrada será la parábola.

Ejemplo 2

Halla la ecuacíón de la parábola con Foco (0,5) y directriz L: X+5=0

Solución 2

El eje focal será el eje de ordenadas y el parámetro P es la ordenada del foco.

Datos:

X = 4py

p = 5

Entonces:

X = 4(5)y

X = 20y

2.2 ECUCACIÓN DE UNA PARÁBOLA CON VÉRTICES EN EL ORIGEN

La ecuación de una parábola con vértices en el origen y con foco en (A,0) es

Y2= 4ax

La parábola abre hacia la derecha si a >0 y abre hacia la izquierda si a <0.

Las figuras A y B muestran las ecuaciones que se pueden aplicar para encontrar las ecuaciones de las satisfacen condiciones específicas.

2.2.1 EJEMPLOS

EJEMPLO 1.- Escribir la ecuación de la parábola con vértice en el origen y con el foco en (0,4).

Solución. La distancia del vértice al foco es 4, y por eso a=4. Poniendo este valor en lugar de a, obtenemos

X2 = 16y

Figura C

EJEMPLO 2.- Una parábola tiene su vértice en el origen, su eje propio está a lo largo del eje x, y pasa por el punto (-3,6) Hallar su ecuación. Solución. La

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com