EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS
Enviado por wiiwiin • 7 de Enero de 2014 • Examen • 2.595 Palabras (11 Páginas) • 966 Visitas
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS
COPLANAR
ES.
LA TORCA (O MOMENTUM)
alrededor de un
eje,
debida a una
fuerza,
es una medida de la
efectividad de la fuerza para que esta produzca una
rotación
alrededor de un eje. La torca se
def
ine de la
siguiente
manera:
TORCA
rFsenα
Donde
r
es la distancia radial desde el punto de aplicación de la fuerza y
α
es el
ángulo
agudo
entre las direcciones de
r y
F
,
como se indica en la figura
Con frecuencia esta definición se escribe en términos de brazo de palanca de la
fuerza,
que es la distancia perpendicular desde el eje a la
línea
de
acción
de la fuerza
Como el brazo de palanca es igual a
rsenα,
la ecuación de la torca se escribe como:
T = F x brazo de palanca
Las unidades de la torca son Newton
metro.
La torca puede se
r positiva o negativa :es
positiva cuando la
rotación
alrededor del eje es en sentido opuesto al movimiento de las
manecillas del reloj y negativa cuando la
rotación
es en el mismo sentido en que se mueven las
manecillas del reloj.
Las dos condiciones
para el equilibrio de un cuerpo
rígido
bajo la
acción
de fuerzas coplanares son
1.
-
LA PRIMERA CONDICION DE LA
FUERZA:
LA SUMA VECTORIAL DE TODAS LAS FUERZAS QUE
ACTUAN SOBRE EL CUERPO DEBE SER
CERO:
=0
= 0
DONDE SE HA TOMADO AL PLANO XY COMO EL PLANO DE LAS FUERZAS COPLANARES.
2.
-
LA SEGUNDA O CONDICION DE LA
TORCA:
TOMANDO UN EJE PERPENDICULAR AL PLANO DE
LAS FUERZAS
COPLANARES.
TODAS LAS TORCAS QUE TIENDEN A PRODUCIR UNA ROTACION EN EL
SENTIDO DEL RELOJ
SE CONSIDERAN
NEGATIVAS,
Y LAS QUE PRODUCEN UNA ROTACION CONTRA
EL SENTIDO DEL
RELOJ,
COMO POSITIVAS < LA SUMA DE TODAS LAS TORCAS QUE ACTUAN SOBRE
EL OBJETO DEBE SER CERO:
∑T = 0
EL CENTRO DE GRAVEDAD
: de un objeto es el punto en el cual se puede considerar que
está
concentrado todo su
peso,
esto
es,
la
línea
de
acción
del peso pasa por el centro de
gravedad.
Una
sola fuerza vertical y dirigida hacia
arriba,
igual en magn
itud al peso del objeto y aplicada en el
centro de
gravedad,
mantendrá
al
cuerpo
en equilibrio
LA POSICION DE LOS EJES ES
ARBITRARIA
:
si la suma de las torcas que
actúan
sobre un cuerpo es
cero
para
un determinado eje y se cumple la
condición
de las
fuerza
s,
esta
será
cero para todo eje
paralelo al primero. Generalmente se escoge el eje de tal forma que la
línea
de
acción
de la fuerza
desconocida pase por la intersección del eje de
rotación
y el plano de las
fuerzas.
Entonces el
ángulo
entre teta y F es
ce
ro,
de tal manera que la fuerza desconocida ejerce
una
torca cero y por
lo tanto no aparece en la ecuación de la torca.
Problemas de
aplicación:
1.
-
Calcule la torca alrededor del eje A en la
figura,
debida a cada una de las fuerzas mostradas.
(
-
8.00
Nm
,
+
8.45Nm,
0)
2.
-
una viga uniforme pesa 200N y sostiene un objeto de 450N como se muestra
en la
figura.
Calcular
la magnitud de las fuerzas que ejercen sobre la viga las columnas de apoyo colocadas en
los
extremos.
(438N , 212N)
3.
-
Un tubo uniforme
de 100N se utiliza como
palanca,
como se indica
en la
figura.
¿Dónde se debe
colocar el fulcro (punto de apoyo
),
si un peso de 500N colocado en un extremo se debe balancear
con uno de 200N colocado en el otro extremo?
¿Qué carga debe soportar el apoyo?
(800N)
4.
-
¿En qué punto de la pértiga de 100N se debe colgar un objeto de 800N, de tal forma que una
niña, colocada en uno de os extremos, sostenga un tercio de lo que soporta una mujer colocada en
el otro extremo?
(La carga se debe colgar
0.22 medi
do desde el extremo donde se encuentra parada la mujer)
5.
-
En un tablón uniforme de 200N y longitud se cuelgan dos objetos: 300N a L/3 de
un extremo,
y
400N a 3L/4 a partir del mismo
extremo. ¿Qué
otra fuerza debe aplicarse para que el tablón se
mante
nga en equilibrio?
(0.56 . La fuerza requerida es de 900N hacia arriba a 0.56L del extremo izquierdo)
6.
-
La escuadra (regla de
ángulo
recto) mostrada
en la
figura,
cuelga
en reposo
de una
clavija. Está
fabricada con una hoja de metal uniforme.
Uno d
e los brazos tiene una longitud de L cm y el otro
tiene 2L cm de longitud. Calcule el
ángulo
t
h
eta que forma cuando esta colgada.
(14º)
7.
-
Examine el diagrama mostrado en la
figura. La
viga uniforme de 600N esta sujeta a un gozne en
el punto
P.
Calcula
r la tensión en la cuerda y las componentes de la fuerza que ejerce el gozne
sobre la viga.
(H=1750N , V=65.6N)
8.
-
Un asta de densidad uniforme y 400N esta suspendida como se muestra en la
figura.
Calcular la
tensión en la cuerda y la fuerza que ej
erce el pivote en P sobre el asta.
(3.44KN, el á
ngulo que forma con la horizontal es de 44º)
9.
-
En la
figura,
las bisagras A y B mantienen
...