ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ecuación Lineal Con N Incógnita


Enviado por   •  18 de Mayo de 2015  •  269 Palabras (2 Páginas)  •  190 Visitas

Página 1 de 2

Ecuación lineal con n incógnita

Una ecuación lineal con n incógnitas es cualquier expresión del tipo: a1x1 + a2x2 + a3x3 + ... + anxn = b, donde ai, b .

Los valores ai se denominan coeficientes,

b es el término independiente.

Los valores xi son las incógnitas.

Solución de una ecuación lineal

Cualquier conjunto de n números reales que verifica la ecuación se denomina solución de la ecuación.

Dada la ecuación x + y + z + t = 0, son soluciones de ella:

(1,-1,1,-1), (-2,-2,0, 4).

Ecuaciones lineales equivalentes

Son aquellas que tienen la misma solución.

x + y + z + t = 0 2x + 2y + 2z + 2t = 0

Ecuaciones lineales de primer grado

Las ecuaciones lineales de primer grado son del tipo ax + b = 0 , con a ≠ 0, ó cualquier otra ecuación en la que al operar, trasponer términos y simplificar adopten esa expresión.

Resolución de ecuaciones de primer grado

En general para resolver una ecuación de primer grado debemos seguir los siguientes pasos:

1º Quitar paréntesis.

2º Quitar denominadores.

3º Agrupar los términos en x en un miembro y los términos independientes en el otro.

4º Reducir los términos semejantes.

5º Despejar la incógnita.

Despejamos la incógnita:

Agrupamos los términos semejantes y los independientes, y sumamos:

Quitamos paréntesis:

Agrupamos términos y sumamos:

Despejamos la incógnita:

Quitamos denominadores, para ello en primer lugar hallamos el mínimo común múltiplo.

Quitamos paréntesis, agrupamos y sumamos los términos semejantes:

Despejamos la incógnita:

Quitamos paréntesis y simplificamos:

Quitamos denominadores, agrupamos y sumamos los términos semejantes:

Quitamos corchete:

Quitamos paréntesis:

Quitamos denominadores:

Quitamos paréntesis:

Agrupamos términos:

Sumamos:

Dividimos los dos miembros por: −9

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com