FACTORIZACIÓN DE POLINOMIOS
Enviado por cruzmaryv • 4 de Enero de 2014 • 1.085 Palabras (5 Páginas) • 272 Visitas
FACTORIZACIÓN DE POLINOMIOS
Para factorizar polinomios hay varios métodos:
1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice:
Pues bien, si nos piden factorizar la expresión , basta aplicar la propiedad distributiva y decir que
Cuando nos piden sacar factor común o simplemente factorizar y hay coeficientes con factores comunes, se saca el máximo común divisor de dichos coeficientes. Por ejemplo, si nos piden factorizar la expresión , será
donde 6 es el máximo común divisor de 36, 12 y 18
Para comprobar si la factorización se ha hecho correctamente, basta efectuar la multiplicación, aplicando la propiedad distributiva de la parte derecha de la igualdad, y nos tiene que dar la parte izquierda.
Otro ejemplo: Factorizar
¡Atención a cuando sacamos un sumando completo!, dentro del paréntesis hay que poner un uno. Tener en cuenta que si hubiéramos puesto y quiero comprobar si está bien, multiplico y me da pero no como me tendría que haber dado.
Sin embargo si efectúo
Otros ejemplos:
2. Si se trata de una diferencia de cuadrados: Es igual a suma por diferencia.
Se basa en la siguiente fórmula
Pero aplicada al revés, o sea que si me dicen que factorice escribo
Otros ejemplos de factorización por este método:
3. Si se trata de un trinomio cuadrado perfecto: Es igual al cuadrado de un binomio
Se basa en las siguientes fórmulas
y
Así si nos dicen que factoricemos: , basta aplicar la fórmula anterior y escribir que
Otros ejemplos de factorización por este método:
4. Si se trata de un trinomio de segundo grado: O sea un polinomio de este tipo
, siendo a, b y c números
Se iguala el trinomio a cero , se resuelve la ecuación , y si tiene dos soluciones distintas, y se aplica la siguiente fórmula:
Veamos un ejemplo: Factorizar el polinomio
Igualamos a cero
Resolvemos la ecuación , y separando las dos soluciones , , y aplicando la fórmula, teniendo en cuenta que a=2
5. Para cualquier polinomio que tenga raíces enteras se puede aplicar la regla de Ruffini: Decir que un polinomio tienes raíces enteras es encontrar valores de x números enteros que al sustituirlos en el polinomio nos da cero.
Si un polinomio de , por ejemplo, cuarto grado tiene cuatro raíces enteras, , , y se factoriza así:
Pero ¿cómo se obtienen las raíces?, por la regla de Ruffini
Ejemplo: Factorizar
Se aplica la regla de Ruffini, probando los divisores del término independiente, en este caso de 12. O sea que se prueba con 1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 12 y –12
Probemos con uno
Se copian los coeficientes del polinomio:
1 -4 -1 16 -12
Y se escribe en una segunda línea el número uno
1 -4 -1 16 -12
1
El primer coeficiente se copia abajo en una tercera línea
1 -4 -1 16 -12
1
1
...