ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fucion Exponencial


Enviado por   •  17 de Abril de 2013  •  825 Palabras (4 Páginas)  •  498 Visitas

Página 1 de 4

Función exponencial

En la naturaleza y en la vida social existen numerosos fenómenos que se rigen por leyes de crecimiento exponencial. Tal sucede, por ejemplo, en el aumento de un capital invertido a interés continuo o en el crecimiento de las poblaciones. En sentido inverso, también las sustancias radiactivas siguen una ley exponencial en su ritmo de desintegración para producir otros tipos de átomos y generar energía y radiaciones ionizantes.

Definición de función exponencial

Se llama función exponencial de base a aquella cuya forma genérica es f (x) = ax, siendo a un número positivo distinto de 1. Por su propia definición, toda función exponencial tiene por dominio de definición el conjunto de los números reales R.

ñLa función exponencial puede considerarse como la inversa de la función logarítmica (ver t36), por cuanto se cumple que:

Representación gráfica de varias funciones exponenciales.

Función exponencial, según el valor de la base.

Propiedades de las funciones exponenciales

Para toda función exponencial de la forma f(x) = ax, se cumplen las siguientes propiedades generales:

• La función aplicada al valor cero es siempre igual a 1:

f (0) = a0 = 1.

• La función exponencial de 1 es siempre igual a la base:

f (1) = a1 = a.

• La función exponencial de una suma de valores es igual al producto de la aplicación de dicha función aplicada a cada valor por separado.

f (x + x?) = ax+x? = ax  ax? = f (x)  f (x?).

• La función exponencial de una resta es igual al cociente de su aplicación al minuendo dividida por la función del sustraendo:

f (x - x?) = ax-x? = ax/ax? = f (x)/f (x?).

La función ex

Un caso particularmente interesante de función exponencial es f (x) = ex. El número e, de valor 2,7182818285..., se define matemáticamente como el límite al que tiende la expresión:

(1 + 1/n)n

cuando el valor de n crece hasta aproximarse al infinito. Este número es la base elegida para los logaritmos naturales o neperianos (ver t34).

La función ex presenta algunas particularidades importantes que refuerzan su interés en las descripciones físicas y matemáticas. Una de ellas es que coincide con su propia derivada (ver t41).

Ecuaciones exponenciales

Se llama ecuación exponencial a aquella en la que la incógnita aparece como exponente. Un ejemplo de ecuación exponencial sería ax = b.

Para resolver estas ecuaciones se suelen utilizar dos métodos alternativos:

• Igualación de la base: consiste en aplicar las propiedades de las potencias para lograr que en los dos miembros de la ecuación aparezca una misma base elevada a distintos exponentes:

Ax = Ay.

En tales condiciones, la resolución de la ecuación proseguiría

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com