Funciones Y Su Clasificación.
Enviado por 3dwin • 11 de Septiembre de 2013 • 814 Palabras (4 Páginas) • 350 Visitas
Funcion
En matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la primera depende exclusivamente del valor de la segunda. Por ejemplo el área A de un círculo es función de su radio r: el valor del área es proporcional al cuadrado del radio, A= π•r2. Del mismo modo, la duración T de un viaje de tren entre dos ciudades separadas por una distancia d de 150 km depende de la velocidad v a la que este se desplace: la duración es inversamente proporcional a la velocidad, T = d / v. A la primera magnitud (el área, la duración) se la denomina variable dependiente, y la cantidad de la que depende (el radio, la velocidad) es la variable independiente.
En álgebra abstracta, el concepto general de función, aplicación o mapeo se refiere en a una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto (correspondencia matemática). Por ejemplo, cada número enteroposee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
... −2 → +4, −1 → +1, ±0 → ±0,
+1 → +1, +2 → +4, +3 → +9, ...
Esta asignación constituye una función entre el conjunto de los números enteros Z y el conjunto de los números naturales N. Aunque las funciones que manipulan números son las más conocidas, no son el único ejemplo: puede imaginarse una función que a cada palabra del español le asigne su letra inicial:
..., Estación → E, Museo → M, Arroyo → A, Rosa → R, Avión → A, ...
Esta es una función entre el conjunto de las palabras del español y el conjunto de las letras del alfabeto español.
La manera habitual de denotar una función f es:
f: A → B
a → f(a),
donde A es el dominio de la función f, su primer conjunto o conjunto de partida; e B es el codominio de f, su segundo conjunto o conjunto de llegada. Por f(a) se denota la regla o algoritmo para obtener la imagen de un cierto objeto arbitrario a del dominio A, es decir, el (único) objeto de B que le corresponde. En ocasiones esta expresión es suficiente para especificar la función por completo, infiriendo el dominio y codominio por el contexto. En el ejemplo anterior, las funciones «cuadrado» e «inicial», llámeseles f y g, se denotarían entonces como:
f: Z → N
k → k2, o sencillamente f(k) = k2;
g: V → A
p → Inicial de p;
si se conviene V = {Palabras del español} y A = {Alfabeto español}.
Una función puede representarse de diversas formas: mediante el citado algoritmo para obtener la imagen de cada elemento, mediante una tabla de valores que empareje cada valor de la variable independiente con su imagen —como las mostradas arriba—, o como una gráfica que dé una imagen de la función
Clasificación de funciones
Funciones algebraicas
En
...