GUIA DE INGRESO A LA UNIVERSIDAD EXANI II
Enviado por tanliz33 • 7 de Marzo de 2012 • 10.223 Palabras (41 Páginas) • 7.369 Visitas
GUIA DE INGRESO A LA UNIVERSIDAD EXANI II
www.ceneval.net EXANI II
EXANI II
www.ceneval.net Página 2
INDICE PÁGINA
I. RAZONAMIENTO LOGICO-MATEMATICO……………………………… 3
II. MATEMATICAS……………………………………………………………… 51
III. ESPAÑOL……………………………………………………………………… 183
IV. RAZONAMIENTO VERBAL………………………………………………… 264
V. TECNOLOGIAS DE INFORMACION Y COMUNICACIÓN……………… 276
EXANI II
www.ceneval.net Página 3
I. RAZONAMIENTO LOGICO-MATEMATICO
Miden la habilidad para procesar, analizar y utilizar información en la Aritmética, el Álgebra y la Geometría. Se ha demostrado que ambas habilidades se relacionan con el éxito en las materias que se estudian en el nivel universitario.
En Aritmética, operaciones fundamentales (suma, resta, multiplicación, división, potenciación y radicación) con números enteros y racionales, cálculos de porcentajes, proporciones y promedios, series numéricas y comparación de cantidades.
En Álgebra, operaciones fundamentales con literales, simplificaciones de expresiones algebraicas, simbolización de expresiones, operaciones con potencias y raíces, factorización, ecuaciones y funciones lineales y cuadráticas.
En Geometría, perímetros y áreas de figuras geométricas, propiedades de los triángulos (principales teoremas), propiedades de rectas paralelas y perpendiculares y Teorema de Pitágoras.
Sucesiones numéricas: Serie de términos formados de acuerdo con una ley.
Series Espaciales: Son figuras o trazos que siguen reglas o patrones determinados.
Imaginación Espacial: Hay que echar a andar nuestra imaginación al 100%, ya que se presentan trazos, recortes y dobleces sin tener que hacerlo físicamente.
Problemas de Razonamiento: En este tipo de problemas se debe aplicar conocimientos básicos de física, química y aritmética.
SUCESIONES
Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden.
EXANI II
www.ceneval.net Página 4
Finita o infinita
Si la sucesión sigue para siempre, es una sucesión infinita, si no es una sucesión finita
Ejemplos
{1, 2, 3, 4 ,...} es una sucesión muy simple (y es una sucesión infinita)
{20, 25, 30, 35, ...} también es una sucesión infinita
{1, 3, 5, 7} es la sucesión de los 4 primeros números impares (y es una sucesión infinita)
{4, 3, 2, 1} va de 4 a 1 hacia atrás
{1, 2, 4, 8, 16, 32, ...} es una sucesión infinita donde vamos doblando cada término
{a, b, c, d, e} es la sucesión de las 5 primeras letras en order alfabético
{a, l, f, r, e, d, o} es la sucesión de las letras en el nombre "alfredo"
{0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s (sí, siguen un orden, en este caso un orden alternativo)
En orden
Cuando decimos que los términos están "en orden", ¡nosotros somos los que decimos qué orden! Podría ser adelante, atrás... o alternando... ¡o el que quieras!
Una sucesión es muy parecida a un conjunto, pero con los términos en orden (y el mismo valor sí puede aparecer muchas veces).
Ejemplo: {0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s. El conjunto sería sólo {0,1}
La regla
Una sucesión sigue una regla que te dice cómo calcular el valor de cada término.
Ejemplo: la sucesión {3, 5, 7, 9, ...} empieza por 3 y salta 2 cada vez:
EXANI II
www.ceneval.net Página 5
¡Pero la regla debería ser una fórmula!
Decir que "empieza por 3 y salta 2 cada vez" no nos dice cómo se calcula el:
• 10º término,
• 100º término, o
• n-ésimo término (donde n puede ser cualquier número positivo que queramos).
Así que queremos una fórmula con "n" dentro (donde n será la posición que tiene el término).
Entonces, ¿cuál sería la regla para {3, 5, 7, 9, ...}?
Primero, vemos que la sucesión sube 2 cada vez, así que podemos adivinar que la regla va a ser "2 × n". Vamos a verlo:
Probamos la regla: 2n
n
Término
Prueba
1
3
2n = 2×1 = 2
2
5
2n = 2×2 = 4
3
7
2n = 2×3 = 6
Esto casi funciona... pero la regla da todo el tiempo valores 1 unidad menos de lo que debería, así que vamos a cambiarla un poco:
Probamos la regla: 2n+1
n
Término
Regla
1
3
2n+1 = 2×1 + 1 = 3
2
5
2n+1 = 2×2 + 1 = 5
3
7
2n+1 = 2×3 + 1 = 7
¡Funciona!
Así que en vez de decir "empieza por 3 y salta 2 cada vez" escribimos la regla como
La regla para {3, 5, 7, 9, ...} es: 2n+1
EXANI II
www.ceneval.net Página 6
Ahora, por ejemplo, podemos calcular el término 100º: 2 × 100 + 1 = 201
Notación
Para que sea más fácil escribir las reglas, normalmente lo hacemos así:
Posición del término
Es normal usar xn para los términos:
• xn es el término
• n es la posición de ese término
Así que para hablar del "quinto término" sólo tienes que escribir: x5
Entonces podemos escribir la regla para {3, 5, 7, 9, ...} en forma de ecuación, así:
xn = 2n+1
Ahora, si queremos calcular el 10º término, podemos escribir:
x10 = 2n+1 = 2×10+1 = 21
¿Puedes calcular el 50º término? ¿Y el 500º?
Ahora veamos algunas sucesiones especiales y sus reglas:
TIPOS DE SUCESIONES
• Sucesiones aritméticas
El ejemplo que acabamos de usar, {3,5,7,9,...}, es una sucesión aritmética (o progresión aritmética), porque la diferencia entre un término y el siguiente es una constante.
Ejemplos
1, 4, 7, 10, 13, 16, 19, 22, 25, ...
Esta sucesión tiene una diferencia de 3 entre cada dos términos. La regla es xn = 3n-2
3, 8, 13, 18, 23, 28, 33, 38, ...
EXANI II
www.ceneval.net Página 7
Esta sucesión tiene una diferencia de 5 entre cada dos términos. La regla es xn = 5n-2
• Sucesiones geométricas
En una sucesión geométrica cada término se calcula multiplicando el anterior por un número fijo.
Ejemplos:
2, 4, 8, 16, 32, 64, 128, 256, ...
Esta sucesión tiene un factor 2 entre cada dos términos. La regla es xn = 2n
...