LA RECTA DE EULER
Enviado por MONIK2303 • 29 de Junio de 2013 • 472 Palabras (2 Páginas) • 586 Visitas
LA RECTA DE EULER
La recta de Euler de un triángulo es aquella que contiene el ortocentro, el circuncentro y el baricentro del mismo.
• Ortocentro (H): punto en el que coinciden las tres alturas.
• Circuncentro (O): punto en el que se cortan las tres mediatrices.
• Baricentro (G): punto de intersección de las tres medianas.
Se llama así en honor a Leonhard Euler, matemático suizo que descubrió este hecho a mediados del siglo XVIII.
Leonhard Euler es uno de los mayores maestros de la humanidad. Es prácticamente imposible encontrar una sola disciplina del saber científico en la que este gigante de las matemáticas y de la inteligencia no haya realizado una aportación esencial. Su majestuosa contribución al conocimiento se desarrolla a lo largo del siglo XVIII y para encontrar obras de semejante calibre es preciso esperar hasta el s XIX en el que desarrollan sus carreras matemáticos de la talla de Gauss, Riemann o Cauchy.
La llamada 'recta de Euler', un resultado de geometría de triángulos que requiere la presentación de algunos conceptos interesantes. Empezaremos considerando el baricentro, o centro de masas del triángulo. Es el punto de intersección de las tres medianas. La mediana es la recta que une el lado medio de un lado con el vértice opuesto. Para aclarar el gráfico únicamente representamos dos de ellas:
Toda figura plana tiene un baricentro. Es un lugar geométrico muy interesante para los tenistas, ya que si consideramos el baricentro de una raqueta de tenis, se trata del punto con el que es conveniente golpear la pelota para obtener un resultado óptimo. Cuando un tenista golpea la pelota con el baricentro, apenas nota repercusión del golpe en la muñeca, mientra que cualquier otro punto ocasiona una reacción en el mango que es conveniente evitar.
Consideremos ahora el lugar donde se cruzan las alturas del triángulo. Las alturas son las perpendiculares a los lados que pasan por el vértice opuesto. El punto de corte de las alturas se denomina ortocentro. De nuevo representamos únicamente dos de estas alturas:
Y vamos a considerar un tercer punto notable del triángulo: el circuncentro, que es el lugar donde se cruzan las mediatrices. Las mediatrices son las rectas perpendiculares a los lados que pasan por el punto medio de estos. Veamos de nuevo el gráfico:
El circuncentro es un lugar muy importante, ya que es el centro de la circunferencia que pasa por los tres vértices del triángulo, como indica su nombre. Veámoslo:
Euler demostró que los tres puntos presentados (baricentro, ortocentro y circuncentro) se disponen según una recta a la que denominamos 'recta de Euler' en su honor. Veamos un par de ejemplos:
...