Muestra
Enviado por cinthyaazucena • 8 de Mayo de 2012 • Informe • 1.506 Palabras (7 Páginas) • 654 Visitas
Muestra:
Es un subconjunto de casos o individuos de una población estadística.
Las muestras se obtienen con la intención de inferir propiedades de la totalidad de la población, para lo cual deben ser representativas de la misma. Para cumplir esta característica la inclusión de sujetos en la muestra debe seguir una técnica de muestreo. En tales casos, puede obtenerse una información similar a la de un estudio exhaustivo con mayor rapidez y menor coste (véanse las ventajas de la elección de una muestra, más abajo).
Por otra parte, en ocasiones, el muestreo puede ser más exacto que el estudio de toda la población porque el manejo de un menor número de datos provoca también menos errores en su manipulación. En cualquier caso, el conjunto de individuos de la muestra son los sujetos realmente estudiados.
El número de sujetos que componen la muestra suele ser inferior que el de la población, pero suficiente para que la estimación de los parámetros determinados tenga un nivel de confianza adecuado. Para que el tamaño de la muestra sea idóneo es preciso recurrir a su cálculo.
Población
Llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones.
Desviación estándar
La desviación estándar o desviación típica (denotada con el símbolo σ) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.
Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.
Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que presentan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad al momento de describirlos e interpretarlos para la toma de decisiones.
Varianza
Varianza (que suele representarse como ) de una variable aleatoria es una medida de dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.
Está medida en unidades distintas de las de la variable. Por ejemplo, si la variable mide una distancia en metros, la varianza se expresa en metros al cuadrado. La desviación estándar, es la raíz cuadrada de la varianza, es una medida de dispersión alternativa expresada en las mismas unidades de los datos de la variable objeto de estudio. La varianza tiene como valor mínimo 0.
Hay que tener en cuenta que la varianza puede verse muy influida por los valores atípicos y no se aconseja su uso cuando las distribuciones de las variables aleatorias tienen colas pesadas. En tales casos se recomienda el uso de otras medidas de dispersión más robustas.
El término varianza fue acuñado por Ronald Fisher en un artículo de 1918 titulado The Correlation Between Relatives on the Supposition of Mendelian Inheritance.
Media aritmética
La media aritmética (también llamada promedio o simplemente media) de un conjunto finito de números es el valor característico de una serie de datos cuantitativos objeto de estudio que parte del principio de la esperanza matemática o valor esperado, se obtiene a partir de la suma de todos sus valores dividida entre el número de sumandos. Cuando el conjunto es una muestra aleatoria recibe el nombre
...