Numeros Complejos
Enviado por kedykiefer • 13 de Mayo de 2013 • 2.174 Palabras (9 Páginas) • 469 Visitas
INTRODUCCION
Los números complejos son la herramienta de trabajo del álgebra, análisis, así como de ramas de las matemáticas puras y aplicadas como variable compleja, ecuaciones diferenciales, aerodinámica y electromagnetismo entre otras de gran importancia. Además los números complejos se utilizan por doquier en matemáticas, en muchos campos de la física (notoriamente en la mecánica cuántica) y en ingeniería, especialmente en la electrónica y las telecomunicaciones, por su utilidad para representar las ondas electromagnéticas y la corriente eléctrica.
En matemáticas, estos números constituyen un cuerpo y, en general, se consideran como puntos del plano: el plano complejo. Una propiedad importante que caracteriza a los números complejos es el teorema fundamental del álgebra-pero que se demuestra aún en un curso de variable compleja-, que afirma que cualquier ecuación algebraica de grado n tiene exactamente n soluciones complejas. Contienen a los números reales y los imaginarios puros y constituyen una de las construcciones teóricas más importantes de la inteligencia humana. Los análogos del cálculo diferencial e integral con números complejos reciben el nombre de variable compleja o análisis complejo.
Definición de los Números Complejos
Los números complejos son una extensión de los números reales y forman el mínimo cuerpo algebraicamente cerrado que los contiene. El conjunto de los números complejos se designa como , siendo el conjunto de los reales se cumple que . Los números complejos incluyen todas las raíces de los polinomios, a diferencia de los reales. Todo número complejo puede representarse como la suma de un número real y un número imaginario (que es un múltiplo real de la unidad imaginaria, que se indica con la letra i).
Origen
El primero en usar los números complejos fue el matemático italiano Girolamo Cardano (1501–1576) quien los usó en la fórmula para resolver las ecuaciones cúbicas. El término “número complejo” fue introducido por el gran matemático alemán Carl Friedrich Gauss (1777–1855) cuyo trabajo fue de importancia básica en álgebra, teoría de los números, ecuaciones diferenciales, geometría diferencial, geometría no euclídea, análisis complejo, análisis numérico y mecánica teórica, también abrió el camino para el uso general y sistemático de los números complejos.
Definición
Definiremos cada complejo z como un par ordenado de números reales (a, b) ó (Re(z), Im(z)), en el que se definen las siguientes operaciones:
• Suma
• Producto por escalar
• Multiplicación
• Igualdad
A partir de estas operaciones podemos deducir otras como las siguientes:
• Resta
• División
Al primer componente (que llamaremos a) se le llama parte real y al segundo (que llamaremos b), parte imaginaria. Se denomina número imaginario puro a aquel que está compuesto sólo por la parte imaginaria, es decir, aquel en el que .
Cuerpo de los números complejos
Los números complejos forman un cuerpo, el cuerpo complejo, denotado por C (o más apropiadamente por el carácter Unicode ℂ ). Si identificamos el número real a con el complejo (a, 0), el cuerpo de los números reales R aparece como un subcuerpo de C. Más aún, C forma un espacio vectorial de dimensión 2
sobre los reales. Los complejos no pueden ser ordenados como, por ejemplo, los números reales, por lo que C no puede ser convertido de ninguna manera en un cuerpo ordenado.
Unidad imaginaria
Tomando en cuenta que , se define un número especial en matemáticas de gran importancia, el número i o unidad imaginaria, definido como
De donde se deduce inmediatamente que,
Valor absoluto o módulo, argumento y conjugado
Valor absoluto o módulo de un número complejo
El valor absoluto, módulo o magnitud de un número complejo z viene dado por la siguiente expresión:
Si pensamos en las coordenadas cartesianas del número complejo z como algún punto en el plano; podemos ver, por el teorema de Pitágoras, que el valor
absoluto de un número complejo coincide con la distancia euclídea desde el origen del plano a dicho punto.
Si el complejo está escrito en forma exponencial z = r eiφ, entonces |z| = r. Se puede expresar en forma trigonométrica como z = r (cosφ + isenφ), donde cosφ + isenφ = eiφ es la conocida fórmula de Euler.
Podemos comprobar con facilidad estas cuatro importantes propiedades del valor absoluto
para cualquier complejo z y w.
Por definición, la función distancia queda como sigue d(z, w) = |z - w| y nos provee de un espacio métrico con los complejos gracias al que se puede hablar de límites y continuidad. La suma, la resta, la multiplicación y la división de complejos son operaciones continuas. Si no se dice lo contrario, se asume que ésta es la métrica usada en los números complejos.
Argumento
El argumento principal o fase de un número complejo genérico (siendo x=Re(z) e y=Im(z)) viene dado por la siguiente expresión:
donde atan2(y,x) es la función arcotangente definida para los cuatro cuadrantes:
O también: Siendo:
la función signo.
Conjugado de un número complejo
Dos binomios se llaman conjugados si solo difieren en su signo central, por ejemplo, los dos binomios: 3m - 1 y 3m + 1 son conjugados.
El conjugado de un complejo z (denotado como ó ) es un nuevo número complejo, definido así:
Se observa que ambos difieren en el signo de la parte imaginaria.
Con este número se cumplen las propiedades:
Esta última fórmula es el método elegido para calcular el inverso de un número complejo si viene dado en coordenadas rectangulares.
Representaciones
Representación binómica
Un número complejo representado como un punto (en rojo) y un vector de posición (azul) en un diagrama de Argand; es la expresión binomial del
...