ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Operaciones De Numros Naturales Racionales Y Enteros


Enviado por   •  27 de Septiembre de 2012  •  4.804 Palabras (20 Páginas)  •  757 Visitas

Página 1 de 20

Introducción

Números Naturales: Un número natural es cualquiera de los números que se usan para contar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para contar objetos. Al conjunto de los números naturales lo llamamos N, N= {1, 2,3...}

Números Enteros: son una generalización del conjunto de números naturales que incluye números enteros negativos, además del cero. El hecho de que un número sea entero, significa que no tiene parte decimal. Los números enteros negativos pueden aplicarse en diversos contextos, como la representación de profundidades bajo el nivel del mar, temperaturas bajo cero, o deudas, entre otros.

Números Racionales: se llaman números racionales a todo número que puede representarse como el cociente de dos enteros con denominador distinto de cero (una fracción común). El término «racional» alude a «ración» o «parte de un todo», y no al pensamiento o actitud racional

Desarrollo

Número natural

Un número natural es cualquiera de los números que se usan para contar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para la enumeración.

Las propiedades de los números naturales son:

• Que un número natural va después del otro

• Que dentro de dos números natural no puede haber otro

• Que son infinitos

Convenios de notación

Puesto que los números naturales se utilizan para contar objetos, el cero puede considerarse el número que corresponde a la ausencia de los mismos. Dependiendo del autor, el conjunto de los números naturales puede presentarse entonces de dos maneras distintas:

 Definición sin el cero:

 Definición con el cero:

Donde la N de natural se suele escribir en "negrita de pizarra".

Ambas presentaciones son utilizadas en distintas áreas de las matemáticas. Históricamente, el uso del cero como numeral fue introducido en Europa en el siglo XII con la invasión musulmana de la Península Ibérica,1 pero no se consideraba un número natural.

Sin embargo, con el desarrollo de la teoría de conjuntos en el siglo XIX, el cero se incluyó en las definiciones conjuntistas de los números naturales. Esta convención prevalece en dicha disciplina, y otras, como la teoría de la computación. En particular, el estándar DIN 5473 adopta esta definición. Sin embargo, en la actualidad ambos convenios conviven.

Para distinguir ambas definiciones a veces se introducen símbolos distintos. Por ejemplo, incluyendo el cero en los naturales, a los números naturales sin el cero, o enteros positivos se les denota como:

Construcciones axiomáticas

Históricamente, se han realizado propuestas para axiomatizar la noción habitual de números naturales, de entre las que destacan las de Peano y la construcción a partir de la teoría de conjuntos.

Axiomas de Peano

Los axiomas de Peano rigen la estructura números naturales sin necesidad de otra teoría (por ejemplo, la de conjuntos) ni de las nociones aritméticas de suma o equivalencia. Requiere, eso sí, de la noción previa de sucesor. Los cinco axiomas de Peano son:

1. El 1 es un número natural.

2. Si n es un número natural, entonces el sucesor de n también es un número natural.

3. El 1 no es el sucesor de ningún número natural.

4. Si hay dos números naturales n y m con el mismo sucesor, entonces n y m son el mismo número natural.

5. Si el 1 pertenece a un conjunto de números A, y además siempre se verifica que: dado un número natural cualquiera que esté en A, su sucesor también pertenece a A; entonces A contiene al conjunto de todos los números naturales. Este es el axioma de inducción, que captura la idea de inducción matemática.

Definición en teoría de conjuntos

En teoría de conjuntos se define al conjunto de los números naturales como el mínimo conjunto que es inductivo. La idea es que se pueda contar haciendo una biyección desde un número natural hasta el conjunto de objetos que se quiere contar. Es decir, para dar la definición de número 2, se requiere dar un ejemplo de un conjunto que contenga precisamente dos elementos. Esta definición fue proporcionada por Bertrand Russell, y más tarde simplificada por Von Neumann quien propuso que el candidato para 2 fuera el conjunto que contiene solo a 1 y a 0.

Formalmente, un conjunto se dice que es un número natural si cumple

1. Para cada ,

2. La relación es un orden total estricto en

3. Todo subconjunto no vacío de tiene elementos mínimo y máximo en el orden

Se intenta pues, definir un conjunto de números naturales donde cada elemento respete las convenciones anteriores. Primero se busca un conjunto que sea el representante del 0, lo cual es fácil ya que sabemos que no contiene elementos. Luego se definen los siguientes elementos de una manera ingeniosa con el uso del concepto de sucesor.

Se define-según Halmos- entonces que el conjunto vacío es un número natural que se denota por y que cada número natural tiene un sucesor denotado como . Estas ideas quedan formalizadas mediante las siguientes expresiones:

De esta manera, cada elemento de algún número natural es un número natural; a saber, un antecesor de él. Por ejemplo:

 Por definición (lo cual refuerza el hecho de que 0 no tiene antecesores)

 1 es el sucesor de 0, entonces

 2 es el sucesor de 1, pero 1 es {0}, entonces

 y en general

Esto permite establecer una relación de orden entre los elementos del conjunto a pesar de que un conjunto es por naturaleza un agregado de elementos desordenados. Se define esta relación mediante la expresión

es decir que un número es menor o igual que si y sólo si contiene a todos los elementos de .

También se puede usar otra definición más inmediata a partir del hecho de que cada número natural consta de sus antecesores. Así si y sólo si .

Ésa es la construcción formal de los naturales que garantiza su existencia como conjunto a la luz del desarrollo axiomático Zermelo-Fraenkel. El postulado de los conjuntos infinitos asegura la validez de la técnica de demostración conocida como inducción matemática.

Un teorema demuestra que cualquier conjunto que sea inductivo contiene a todos los números naturales, es decir que si es un conjunto inductivo,

...

Descargar como (para miembros actualizados) txt (27 Kb)
Leer 19 páginas más »
Disponible sólo en Clubensayos.com