PROBABILIDAD
Enviado por niyimarley • 23 de Febrero de 2015 • 995 Palabras (4 Páginas) • 297 Visitas
TEOREMA DE BAYES
En la teoría de la probabilidad el teorema de Bayes es un resultado enunciado por Thomas Bayes en 1763, que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A.
El Teorema de Bayes viene a seguir el proceso inverso al que hemos visto en el Teorema de la probabilidad total:
La fórmula del Teorema de Bayes es: con base en la definición de Probabilidad condicionada, obtenemos la Fórmula de Bayes, también conocida como la Regla de Bayes:
El teorema de Bayes es válido en todas las aplicaciones de la teoría de la probabilidad. Sin embargo, hay una controversia sobre el tipo de probabilidades que emplea. En esencia, los seguidores de la estadística tradicional sólo admiten probabilidades basadas en experimentos repetibles y que tengan una confirmación empírica mientras que los llamados estadísticos bayesianos permiten probabilidades subjetivas. El teorema puede servir entonces para indicar cómo debemos modificar nuestras probabilidades subjetivas cuando recibimos información adicional de un experimento. La estadística bayesiana está demostrando su utilidad en ciertas estimaciones basadas en el conocimiento subjetivo a priori y el hecho de permitir revisar esas estimaciones en función de la evidencia empírica es lo que está abriendo nuevas formas de hacer conocimiento. Una aplicación de esto son los clasificadores bayesianos que son frecuentemente usados en implementaciones de filtros de correo basura o spam, que se adaptan con el uso.
Como observación, se tiene y su demostración resulta trivial.
Ejemplos
1. El parte meteorológico ha anunciado tres posibilidades para el fin de semana:
a) Que llueva: probabilidad del 50%.
b) Que nieve: probabilidad del 30%
c) Que haya niebla: probabilidad del 20%.
Según estos posibles estados meteorológicos, la posibilidad de que ocurra un accidente es la siguiente:
a) Si llueve: probabilidad de accidente del 10%.
b) Si nieva: probabilidad de accidente del 20%
c) Si hay niebla: probabilidad de accidente del 5%.
Resulta que efectivamente ocurre un accidente y como no estábamos en la ciudad no sabemos qué tiempo hizo (nevó, llovió o hubo niebla). El teorema de Bayes nos permite calcular estas probabilidades:
Las probabilidades que manejamos antes de conocer que ha ocurrido un accidente se denominan "probabilidades a priori" (lluvia con el 60%, nieve con el 30% y niebla con el 10%).
Una vez que incorporamos la información de que ha ocurrido un accidente, las probabilidades del suceso A cambian: son probabilidades condicionadas P (A/B), que se denominan "probabilidades a posteriori".
Vamos a aplicar la fórmula:
a) Probabilidad de que estuviera lloviendo:
La probabilidad de que efectivamente estuviera lloviendo el día del accidente (probabilidad a posteriori) es del 71,4%.
b) Probabilidad de que estuviera nevando:
La probabilidad de que estuviera nevando es del 21,4%.
c) Probabilidad de que hubiera niebla:
...