ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Tarea De Reynolds


Enviado por   •  20 de Agosto de 2013  •  1.058 Palabras (5 Páginas)  •  238 Visitas

Página 1 de 5

-Historia de la Geometría Analítica.

En el año de 1637 publicó Rene Descartes(1596-1650) su geometrie, dividida en tres libros, de los cuales dedica el segundo a lo que se ha llamado Geometría Analítica, y de la cual se ha dicho, con toda exactitud, que ha hecho época. En ella establece el enlace entre el número y el espacio, y aunque su importancia sólo se evidenció años más tarde, su publicación influyó en forma decisiva en el desarrollo de todas las ramas de las ciencias exactas, específicamente el con la nueva simbólica de preconiza.

Es opinión generalmente admitida entre los matemáticos que la Geometría Analítica brotó completamente elaborada, adulta, de la cabeza de Descartes. Sin embargo, hay discrepancias entre los sabios a este respecto. “Algunos autores han escrito, otros lo han repetido y se repite constantemente, que Descartes es el inventor de la aplicación del Álgebra a la geometría. Esto no es exacto. Se atribuye a Descartes más de lo que pudiera pretender”. A pesar del merito indiscutible de este matemático, no pude aceptarse lo que lagéométrie dice M. Charles (1793-1880) al llamarla criatura generada sin madre, pues con tal afirmación se olvidan demasiado los derechos de sus antecesores, y de F. Viete (1540-1603) en particular, en cuyas obras hay aplicaciones del Álgebra a la Geometría.

-Sistema de coordenadas rectangulares.

Las coordenadas cartesianas o coordenadas rectangulares son un tipo de coordenadas ortogonales usadas en espacios euclídeos, para la representación gráfica de una función, caracterizadas porque usa como referencia ejes ortogonales entre sí que se cortan en un punto origen. Las coordenadas cartesianas se definen así como la distancia al origen de las proyecciones ortogonales de un punto dado sobre cada uno de los ejes. La denominación de 'cartesiano' se introdujo en honor de René Descartes, quien lo utilizó de manera formal por primera vez.

Si el sistema es si es un sistema bidimensional, se denomina plano cartesiano. El punto de corte de las rectas se hace coincidir con el punto cero de las rectas y se conoce como origen del sistema. Al eje horizontal o de las abscisas se le asigna los números enteros de las equis ("x"); y al eje vertical o de las ordenadas se le asignan los números enteros de las yes ("y"). Al cortarse las dos rectas dividen al plano en cuatro regiones, estas zonas se conocen como cuadrantes:

• Primer cuadrante "I": Región superior derecha

• Segundo cuadrante "II": Región superior izquierda

• Tercer cuadrante "III": Región inferior izquierda

• Cuarto cuadrante "IV": Región inferior derecha

-Pares ordenados de lugares geométricos.

Es una pareja de objetos matemáticos, en la que se distingue un primer elemento y un segundo elemento. El par ordenado cuyo primer elemento es a y cuyo segundo elemento es b se denota como (a,b).

Un par ordenado (a, b) no es el conjunto que contiene a a y b, {a, b}. Un conjunto está definido únicamente por sus elementos, mientras que en un par ordenado el orden de estos es también parte de su definición. Por ejemplo, los conjuntos {0, 1} y {1, 0} son idénticos, pero los pares ordenados (0, 1) y (1, 0) son distintos.

Los pares ordenados también se denominan 2-tuplas o vectores 2-dimensionales. La noción de una colección finita de objetos ordenada puede generalizarse a más de dos objetos, dando

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com