Tarea - Metrología
Enviado por Claudio Muñoz • 2 de Junio de 2017 • Tarea • 1.496 Palabras (6 Páginas) • 511 Visitas
Tarea semana 5
Tipos de Errores
Claudio Muñoz Carbacho
Metrología
Instituto IACC
15-05-2017
Introducción:
para el siguiente desarrollo se ha encomendado la tarea como control de Calidad de una empresa con una línea productiva en donde se fabrican lápices grafito. Lograr evaluar algunos errores y situaciones con respecto a ciertas mediciones realizadas en el proceso antes de estregar el producto final al cliente. Para esto usaremos información y datos reunidos en el proceso para determinar en primera instancia los errores Absolutos en estas mediciones, Porcentual e incertidumbre. Y posterior a estos realizar analisis de para determinar la exactitud de estos.
Desarrollo:
se nos ha proporcionados la siguiente tabla de datos para realizar los estudios.
Medida | Longitud en mm |
1 | 165 |
2 | 162 |
3 | 166 |
4 | 168 |
5 | 161 |
6 | 163 |
7 | 170 |
Estos rangos de mediciones fueron obtenidos en la fabricación de los lápices antes de la entrega final.
Acontinuacion explicaremos de forma sencilla los conceptos, E. absoluto, Porcentual e Incertidumbre:
En primera instancia debemos calcular el error absoluto. Este es el error que proporciona las mediciones exactas, entre lo que realmente midió en este caso el lápiz. Versus los valores que para este caso están seteados en el maquina, es decir, la diferencia real que existe entre estos dos valores. Teórico v/s real.
Un ejemplo es en una línea de producción de tableros digamos que por receta de producción se pide un largo de 3710mm pero lo medido es 3715mm para este caso en particular seria
Ea= +- 3715mm – 3710mm = +- 5 mm
Para el error Porcentual, netamente es el Porcentaje al que corresponde referente al valor calculado con el Error Absoluto y lo que supuestamente debería ser lo real o seteado.
Es decir, el cociente entre el E. Absoluto y el supuesto valor exacto.
Er=(Ea/ V. Especificado) x 100
se multiplica por 100 para que pueda ser expresado en porcentaje.
La Incertidumbre, corresponde, en pocas palabras. Que tan positivo fue el error calculado entre el error absoluto. Y el valor especificado, corresponde siempre a una estimación positiva. Es decir. Para el tablero mencionado anteriormente esta correspondería a 5mm.
Explicado esto procedemos a calcular los valores solicitados.
Como en esta parte no tenemos un valor especifico nombrado o de referencia para poder comenzar nuestros cálculos. Tomaremos como valor de referencia el promedio de los datos de la tabla correspondiente a las medidas de los lápices grafitos. Una vez obtenido este promedio o media podemos comenzar por calcular el Error Absoluto.
Para esto con los datos de la tabla tenemos
Ve= (165+162+166+168+161+163+170) = 165 mm
7
Con este valor más específico podemos calcular el error.
- Va = 165 mm - 165 mm = 0 mm
- Va = 162 mm - 165 mm = -3 mm
- Va = 166 mm - 165 mm = 1 mm
- Va = 168 mm - 165 mm = 3 mm
- Va = 161 mm - 165 mm = -4 mm
- Va = 163 mm - 165 mm = -2 mm
- Va = 170 mm - 165 mm = 5 mm
Con estos cálculos realizados hemos obtenido el error absoluto de la tabla proporcionado.
Es decir, en la primera medición , tenemos un error de 0 mm, el segunda medición un error de -3 mm, y así sucesivamente hasta completar las 7 mediciones.
- Ya con esto podemos ahora calcular el error porcentual.
Er= (Ea/ Valor especificado) x 100
luego
- Er = (0 mm / 165mm ) x 100 = 0 %
- Er = (-3 mm / 165mm ) x 100 = -1,81 %
- Er = (1 mm / 165mm ) x 100 = 0,60 %
- Er = (3 mm / 165mm ) x 100 = 1,81 %
- Er = (-4 mm / 165mm ) x 100 = -2,42 %
- Er = (-2 mm / 165mm ) x 100 = -1,21 %
- Er = (5 mm / 165mm ) x 100 = 3.03 %
Con estos cálculos realizados hemos obtenido el porcentaje de error en las mediciones ya sea positivo o negativo, es decir para, este caso por ejemplo la última medición tiene una porcentaje mayor al valor especificado en un 3,03% mientras que la medida anterior en caso contrario tiene un porcentaje de -1,21, por bajo el valor especificado.
Luego con los datos de la tabla de mediadas y el valor especifico requerido, podemos calcular la incertidumbre. Recordemos que esta siempre es un valor positivo ya no es ya que no es la suma o resta de los valores, si no el tramo en que existe un error. Es decir, ya sea una diferencia positiva o negativa. En un producto que tiene más o menos 3 mm de lo requerido se requiere el rango positivo . Siempre su valor será de 3 mm
Con esto tenemos
Longitud medida | Valor especifico | Incertidumbre |
165 | 165 | +0 |
162 | 165 | +3 |
166 | 165 | +1 |
168 | 165 | +3 |
161 | 165 | +4 |
163 | 165 | +2 |
170 | 165 | +5 |
...