Teoria De Decisiones Estadisticas
Enviado por rubelo328 • 25 de Abril de 2012 • 2.357 Palabras (10 Páginas) • 3.773 Visitas
TEORÍA DE DECISIONES ESTADÍSTICAS
INTRODUCCIÓN
La estadística trata de las técnicas para recolectar, organizar, presentar, analizar un conjunto de datos numéricos y a partir de ellos y de un marco teórico, hacer las indiferencias de lugar. Es una herramienta fundamental para la investigación científica y empírica en los campos de la administración, educación, sociología, psicología, medicina, genética, informática, ingeniería, contabilidad, economía, agricultura, etc.
Se consagra en forma directa al gran problema universal de como tomar las decisiones inteligentes y acertadas en condiciones de incertidumbre. Sirve como fuente de instrucción para los niveles introductorias de estadística descriptiva y por consiguiente, los conceptos manejados y las técnicas empleadas han sido presentadas de la forma mas simple, claramente posibles.
ESTADISTICA
Se usa como un valioso auxiliar y en los diferentes campos del conocimiento y en las variadas ciencias. Es un lenguaje que permite comunicar información basada en datos cuantitativos.
Decisiones estadísticas
Muy a menudo, en la práctica, se tienen que tomar decisiones sobre poblaciones, partiendo de la información muestral de las mismas. Tales decisiones se llaman decisiones estadísticas. Por ejemplo, se puede querer decidir a partir de los datos del muestreo, si un suero nuevo es realmente efectivo para la cura de una enfermedad, si un sistema educacional es mejor que otro, si una moneda determinada está o no cargada. etc.
Hipótesis estadísticas. Hipótesis nula
Para llegar a tomar decisiones, conviene hacer determinados supuestos o conjeturas acerca de las poblaciones que se estudian. Tales supuestos que pueden ser o no ciertos se llaman hipótesis estadísticas y, en general, lo son sobre las distribuciones de probabilidad de las poblaciones.
En muchos casos se formulan las hipótesis estadísticas con el solo propósito de rechazarlas o invalidarlas. Por ejemplo, si se quiere decidir si una moneda está cargada, se formula la hipótesis de que la moneda está bien, s decir, p = 0.5; donde p es la probabilidad de cara. Análogamente, si se quiere decidir sobre si un procedimiento es mejor que otro, se formula la hipótesis de que no hay diferencia entre los procedimientos (es decir, cualquier diferencia observada se debe meramente a fluctuaciones en el muestreo de la misma población). Tales hipótesis se llaman también hipótesis nulas y se denotan por Ho.
Cualquier hipótesis que difiera de una hipótesis dada se llama hipótesis alternativa. Por ejemplo, si una hipótesis es p = 0.5, hipótesis alternativas son p = 0.7; p ? 0,5 o p > 0,5. Una hipótesis alternativa de la hipótesis nula se denota por H 1.
Ensayos de hipótesis y significación
Si en el supuesto de que una hipótesis determinada es cierta, se encuentra que los resultados observados en una muestra al azar difieren marcadamente de aquellos que cabía esperar con la hipótesis y con la variación propia del muestreo, se diría que las diferencias observadas son significativas y se estaría en condiciones de rechazar la hipótesis (o al menos no aceptarla de acuerdo con la evidencia obtenida). Por ejemplo, si en 20 lanzamientos de una moneda se obtienen 16 caras, se estaría inclinado a rechazar la hipótesis de que la moneda está bien, aunque sería posible que fuese un rechazamiento erróneo.
Los procedimientos que facilitan el decidir si una hipótesis se acepta o se rechaza o el determinar si las muestras observadas difieren significativamente de los resultados esperados se llaman ensayos de hipótesis, ensayos de significación o reglas de decisión.
ERRORES DE TIPO I Y TIPO II
Si se rechaza una hipótesis cuando debería ser aceptada, se dice que se comete un error del Tipo I. Si, por el contrario, se acepta una hipótesis que debería ser rechazada, se dice que se comete un error del Tipo II. En cualquiera de los dos casos se comete un error al tomar una decisión equivocada.
Para que cualquier ensayo de hipótesis o reglas de decisión sea bueno, debe diseñarse de forma que minimice los errores de decisión. Esto no es tan sencillo como pueda parecer puesto que para un tamaño de muestra dado, un intento de disminuir un tipo de error, va generalmente acompañado por un incremento en el otro tipo de error. En la práctica, un tipo de error puede tener más importancia que el otro, y así se tiende a conseguir poner una limitación al error de mayor importancia. La única forma de reducir al tiempo ambos tipos de error es incrementar el tamaño de la muestra, lo cual puede ser o no ser posible.
NIVEL DE SIGNIFICACION
La probabilidad máxima con la que en el ensayo de una hipótesis se puede cometer un error del Tipo I se llama nivel de significación del ensayo. Esta probabilidad se denota frecuentemente por a; generalmente se fija antes de la extracción de las muestras, de modo que los resultados obtenidos no influyen en la elección.
En la práctica se acostumbra a utilizar niveles de significación del 0.05 ó 0.01, aunque igualmente pueden emplearse otros valores. Si, por ejemplo, se elige un nivel de significación del 0.05 ó 5 % al diseñar un ensayo de hipótesis, entonces hay aproximadamente 5 ocasiones en 100 en que se rechazaría la hipótesis cuando debería ser aceptada, es decir, se está con un 95 % de confianza de que se toma la decisión adecuada. En tal caso se dice que la hipótesis ha sido rechazada al nivel de significación del 0.05, lo que significa que se puede cometer error con una probabilidad de 0.05.
Ensayos referentes a la distribución normal
Para aclarar las ideas anteriores, supóngase que con una hipótesis dada, la distribución muestral de un estadístico S es una distribución normal con media µs Y desviación típica uso Entonces la distribución de la variable tipificada (representada por z) dada por z = (S –µs) /ss, es una normal tipificada (media 0, varianza 1) y se muestra en la figura.
Como se indica en la figura, se puede estar con el 95 % de confianza de que, si la hipótesis es cierta, el valor de z obtenido de una muestra real para el estadístico S se encontrará entre -1.96 y 1.96 (puesto que el área bajo la curva normal entre estos valores es 0.95).
Sin embargo, si al elegir una muestra al azar se encuentra que z para ese estadístico se halla fuera del rango -1.96 a 1.96, lo que quiere decir que es un suceso con probabilidad de solamente 0.05 (área sombreada de la figura) si la hipótesis fuese verdadera. Entonces puede decirse que esta z difiere significativamente de la que cabía esperar bajo esta hipótesis y se estaría inclinado a rechazar la hipótesis.
El área total sombreada 0.05
...