Termodinámica
Enviado por dary70 • 21 de Junio de 2015 • 2.265 Palabras (10 Páginas) • 169 Visitas
1-. Historia:
Durante la década de 1840, varios físicos entre los que se encontraban Joule, Helmholtz y Meyer, fueron desarrollando esta ley. Sin embargo, fueron primero Clausius en 1850 y Thomson (Lord Kelvin) un año después quienes escribieron los primeros enunciados formales.
2-. Primera ley de la Termodinámica
Establece que la energía no se crea, ni se destruye, sino que se conserva. Entonces esta ley expresa que, cuando un sistema es sometido a un ciclo termodinámico, el calor cedido por el sistema será igual al trabajo recibido por el mismo, y viceversa.
Es decir Q = W, en que Q es el calor suministrado por el sistema al medio ambiente y W el trabajo realizado por el medio ambiente al sistema durante el ciclo.
2.1-. Primera Ley para un sistema
En este caso, el sistema podría ser el agua contenida en un recipiente, y el medio ambiente todo lo que rodea el recipiente, que serían desde la cocina en donde descansa el recipiente con agua hasta el quemador que le suministra calor, en fin, la atmósfera y todo lo que esté fuera del recipiente.
Supongamos que encima de este recipiente colocamos una tapa, únicamente usando su peso. Supongamos además que al recipiente se le suministra calor del quemador de la cocina que lo contiene. A medida que el agua empieza a hervir, la tapa empieza a moverse cada vez más rápidamente. El movimiento de la tapa es entonces el desplazamiento que representa el trabajo realizado por el sistema sobre el medio ambiente.
Cuando el agua está hirviendo, hace que la tapa del recipiente realice el trabajo. Pero esto lo hace a costa del movimiento molecular, lo que significa que no todo el calor suministrado va a transformarse en trabajo, sino que parte se convierte en incremento de la energía interna, la cual obedece a la energía cinética de traslación, vibración y potencial molecular. Por lo que la fórmula anterior que mencionamos también tendría que incluir a la energía interna.
3-. Descripción de la primera Ley
La forma de transferencia de energía común para todas las ramas de la física -y ampliamente estudiada por éstas- es el trabajo.
Dependiendo de la delimitación de los sistemas a estudiar y del enfoque considerado, el trabajo puede ser caracterizado como mecánico, eléctrico, etc. pero su característica principal es el hecho de transmitir energía y que, en general, la cantidad de energía transferida no depende solamente de los estados iniciales y finales, sino también de la forma concreta en la que se lleven a cabo los procesos.
El calor es la forma de transferencia de un tipo de energía particular, propiamente termodinámica, que es debida únicamente a que los sistemas se encuentren a distintas temperaturas (es algo común en la termodinámica catalogar el trabajo como toda trasferencia de energía que no sea en forma de calor). Los hechos experimentales corroboran que este tipo de transferencia también depende del proceso y no sólo de los estados inicial y final.
Sin embargo, lo que los experimentos sí demuestran es que dado cualquier proceso de cualquier tipo que lleve a un sistema termodinámico de un estado A a otro B, la suma de la energía transferida en forma de trabajo y la energía transferida en forma de calor siempre es la misma y se invierte en aumentar la energía interna del sistema. Es decir, que la variación de energía interna del sistema es independiente del proceso que haya sufrido. En forma de ecuación y teniendo en cuenta el criterio de signos termodinámico esta ley queda de la forma:
Así, la Primera Ley (o Primer Principio) de la termodinámica relaciona magnitudes de proceso (dependientes de éste) como son el trabajo y el calor, con una variable de estado (independiente del proceso) tal como lo es la energía interna.
4-. Aplicaciones de la primera Ley
4.1-. Sistemas cerrados
Un sistema cerrado es uno que no tiene intercambio de masa con el resto del universo termodinámico. También es conocido como masa de control. El sistema cerrado puede tener interacciones de trabajo y calor con sus alrededores, así como puede realizar trabajo a través de su frontera. La ecuación general para un sistema cerrado (despreciando energía cinética y potencial y teniendo en cuenta el criterio de signos termodinámico) es:
Donde Q es la cantidad total de transferencia de calor hacia o desde el sistema, W es el trabajo total e incluye trabajo eléctrico, mecánico y de frontera; y U es la energía interna del sistema.
4.2-. Sistemas abiertos
Un sistema abierto es aquel que tiene entrada y/o salida de masa, así como interacciones de trabajo y calor con sus alrededores, también puede realizar trabajo de frontera.
La ecuación general para un sistema abierto en un intervalo de tiempo es:
O igualmente;
Donde;
In representa todas las entradas de masa al sistema.
Out representa todas las salidas de masa desde el sistema.
Es la energía por unidad de masa del flujo y comprende la entalpía, energía potencial y energía cinética:
La energía del sistema es:
La variación de energía del sistema en el intervalo de tiempo considerado (entre t0 y t) es:
4.3-. Sistemas abiertos en estado estacionario
El balance de energía se simplifica considerablemente para sistemas en estado estacionario (también conocido como estado estable). En estado estacionario se tiene , por lo que el balance de energía queda:
4.4-. Sistema aislado
Es aquel sistema en el cual no hay intercambio ni de masa ni de energía con el exterior.
5-.Trabajo
El trabajo es hecho por un sistema sobre sus alrededores si el único efecto sobre cualquier cosa externa al sistema es la elevación de su peso.
5.1-.Trabajo en los procesos termodinámicos
Para un gas contenido en un envase cilíndrico ajustado con un émbolo móvil, como se muestra en la figura 13.4, si el gas está en equilibrio térmico ocupa un volumen V y produce una presión constante P sobre las paredes del cilindro y sobre el émbolo, de área A. La fuerza ejercida por la presión del gas sobre el émbolo es F = PA.
Si el gas se expande desde el volumen V hasta el volumen V+dV lo suficientemente lento, el sistema permanecerá en equilibrio termodinámico. Por efecto de la expansión, el émbolo de desplazará verticalmente hacia arriba una distancia dy, y el trabajo realizado por el gas sobre el émbolo, será:
dW =
...