Tipos De Funciones
Enviado por Hache11 • 17 de Marzo de 2014 • 1.361 Palabras (6 Páginas) • 224 Visitas
Tipos de funciones
Clasificación de funciones
Funciones algebraicas
En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:
Funciones explícitas
Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2
Funciones implícitas
Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0
Funciones polinómicas
Son las funciones que vienen definidas por un polinomio.
f(x) = a0 + a1x + a2x² + a2x³ +••• + anxn
Su dominio es , es decir, cualquier número real tiene imagen.
Funciones constantes
La función constante es del tipo:
y = n
El criterio viene dado por un número real.
La pendiente es 0.
La gráfica es una recta horizontal paralela a al eje de abscisas.
Rectas verticales
Las rectas paralelas al eje de ordenadas no son funciones, ya que un valor de x tiene infinitas imágenes y para que sea función sólo puede tener una. Son del tipo:
x = K
Función afín
La función afín es del tipo:
y = mx + n
m es la pendiente de la recta.
La pendiente es la inclinación de la recta con respecto al eje de abscisas.
Dos rectas paralelas tienen la misma pendiente.
n es la ordenada en el origen y nos indica el punto de corte de la recta con el eje de ordenadas.
Ejemplos de funciones afines
Representa las funciones:
1 y = 2x - 1
x y = 2x-1
0 -1
1 1
2y = -¾x - 1
x y = -¾x-1
0 -1
4 -4
Función lineal
La función lineal es del tipo:
y = mx
Su gráfica es una línea recta que pasa por el origen de coordenadas.
x 0 1 2 3 4
y = 2x 0 2 4 6 8
y = 2x
Pendiente
m es la pendiente de la recta.
La pendiente es la inclinación de la recta con respecto al eje de abscisas.
Si m > 0 la función es creciente y el ángulo que forma la recta con la parte positiva del eje OX es agudo.
Si m < 0 la función es decreciente y el ángulo que forma la recta con la parte positiva del eje OX es obtuso.
Función identidad
f(x) = x
Su gráfica es la bisectriz del primer y tercer cuadrante.
Función cuadrática
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.
f(x) = ax² + bx +c
Representación gráfica de la parábola
Podemos construir una parábola a partir de estos puntos:
1. Vértice
Por el vértice pasa el eje de simetría de la parábola.
La ecuación del eje de simetría es:
2. Puntos de corte con el eje OX
En el eje de abscisas la segunda coordenada es cero, por lo que tendremos:
ax² + bx +c = 0
Resolviendo la ecuación podemos obtener:
Dos puntos de corte: (x1, 0) y (x2, 0) si b² − 4ac > 0
Un punto de corte: (x1, 0) si b² − 4ac = 0
Ningún punto de corte si b² − 4ac < 0
3. Punto de corte con el eje OY
En el eje de ordenadas la primera coordenada es cero, por lo que tendremos:
f(0) = a • 0² + b • 0 + c = c (0,c)
Representar la función f(x) = x² − 4x + 3.
Construcción de parábolas a partir de y = x²
Partimos de y = x²
x y = x²
-2 4
-1 1
0 0
1 1
2 4
Funciones racionales
El criterio viene dado por un cociente entre polinomios:
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.
Dentro de este tipo tenemos las funciones de proporcionalidad inversa de ecuación:
.
Sus gráficas son hipérbolas. También son hipérbolas las gráficas de las funciones.
TRACENDENTE
TRIGONOMETRICA:
Trigonometría es una rama de las matemáticas de antiguo origen, cuyo significado etimológico es "la medición de los triángulos". Se deriva del vocablo griego τριγωνο "triángulo" + μετρον "medida"
La trigonometría en principio es la rama de las matemáticas que estudia las relaciones entre los ángulos y los lados de los triángulos. Para esto se vale de las razones trigonométricas, las cuales son utilizadas frecuentemente en cálculos técnicos. En términos generales, la trigonometría es el estudio de las funciones seno, coseno, tangente, cotangente, secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.
FUNCION TRIGONOMETRICA:
La
...