Toma De Decisiones Bajo Modelos De Certidumbre Incertidumbre Y Riesgo
Enviado por argeliagt • 17 de Noviembre de 2013 • 2.193 Palabras (9 Páginas) • 1.475 Visitas
Toma De Decisiones Bajo Modelos De Certidumbre Incertidumbre Y Riesgo
Existen muchas maneras de clasificar los modelos. El distinguir entre modelos normativos (llamados a veces prescriptivos) y descriptivos es útil al evaluar los resultados del modelo. Con frecuencia los modelos normativos se usan como guía. El modelo proporciona una guía de cómo se debe actuar. Puede no seguirse el modelo con exactitud en cualquier situación dada; puede escogerse seguirlo solo en parte o tal vez ignorarlo por completo. Aun así, los modelos normativos son bastantes valiosos. El mayor uso que se les da a los modelos descriptivos es el del conocimiento de cómo se comporta un sistema dado para poder hacer mejoras. En este sentido, los modelos descriptivos son herramientas de trabajo más que guías ideales.
Una segunda taxonomía para los modelos es concreto y abstracto. Los modelos concretos tienen, en general, algunas características físicas en común con la realidad que se esta modelando. Son en si mismo sistemas reales físicos. El modelo de aeroplano usado para las pruebas del túnel de viento, la maqueta de un edificio y los modelos e automóviles a escala natural son modelos concretos. Las replicas son modelos concretos tan cercanos a la realidad que puede ser difícil diferenciarlos. Los modelos abstractos son el extremo opuesto de los modelos concretos. No tienen características físicas comunes con el original.
La teoría de decisiones proporciona una manera útil de clasificar modelos para la toma de decisiones. Se supondrá que se ha definido el problema, que se tienen todos los datos y que se han identificado los cursos de acción alternativos. La tarea es entonces seleccionar la mejor alternativa. La teoría de de decisiones dice que esta tarea de hacer una selección caerá en una de cuatro categorías generales dependiendo de la habilidad personal para predecir las consecuencias de cada alternativa.
Categorías. Consecuencias.
Certidumbre Deterministas
Riesgo Probabilistas
Incertidumbre Desconocidas.
conflicto Influidas por un oponente.
• Toma de decisiones bajo certidumbre.
Se tiene conocimiento total sobre el problema, las alternativas de solución que se planteen van a causar siempre resultados conocidos e invariables. Al tomar la decisión solo se debe pensar en la alternativa que genere mayor beneficio.
Mediante este modelo de decisión si se pueden predecir con certeza las consecuencias de cada alternativa de acción, entonces se tienen una tarea de toma de decisiones bajo certidumbre. Otra manera de pensar en esto es que existe una relación directa de causa y efecto entre cada acto y su consecuencia. Si esta lloviendo, ¿deberá llevarse un paraguas? Si hace frió, ¿deberá llevarse un abrigo? Ya sea que se lleve o no el paraguas o el abrigo, las consecuencias son predecibles.
Una buena parte de las decisiones que se toman a diario cae dentro de esta categoría. ¿En donde comer? ¿En donde comprar el material de la oficina? ¿Que modo de transporte usar para los productos? Conceptualmente, la tarea es bastante sencilla. Simplemente se evalúan las consecuencias de cada acción alternativa y se selecciona la que se prefiere. Sin embargo, en la práctica, esto puede resultar lejos de ser fácil. El número de alternativas puede ser muy grande (o infinito) lo que haría muy laboriosa la enumeración. Por ejemplo, si una empresa usa 10 000 kilogramos anuales de polvo limpiador, ¿Cómo debe guardarse el inventario? Se tienen disponibles 10 000 alternativas (mas aun se permiten cantidades fraccionales).
• Toma de decisiones bajo riesgo.
La información con la que se cuenta para solucionar el problema es incompleta, es decir, se conoce el problema, se conocen las posibles soluciones, pero no se conoce con certeza los resultados que pueden arrojar.
En este tipo de decisiones, las posibles alternativas de solución tienen cierta probabilidad conocida de generar un resultado. En estos casos se pueden usar modelos matemáticos o también el decisor puede hacer uso de la probabilidad objetiva o subjetiva para estimar el posible resultado.
La probabilidad objetiva es la posibilidad de que ocurra un resultado basándose en hechos concretos, puede ser cifras de años anteriores o estudios realizados para este fin. En la probabilidad subjetiva se determina el resultado basándose en opiniones y juicios personales.
Este modelo, incluye aquellas decisiones para las que las consecuencias de una acción dada dependen de algún evento probabilista.
• Toma de decisiones bajo incertidumbre.
Se posee información deficiente para tomar la decisión, no se tienen ningún control sobre la situación, no se conoce como puede variar o la interacción de la variables del problema, se pueden plantear diferentes alternativas de solución pero no se le puede asignar probabilidad a los resultados que arrojen.
Con base en lo anterior hay dos clases de incertidumbre:
• Estructurada: No se sabe que puede pasar entre diferentes alternativas, pero sí se conoce que puede ocurrir entre varias posibilidades.
• No estructurada: No se sabe que puede ocurrir ni las probabilidades para las posibles soluciones, es decir no se tienen ni idea de que pueda pasar.
Esta es una categoría muy común para las decisiones aunque de nombre peculiar. Se parece a la toma de decisiones bajo riesgo, con una diferencia importante. Ahora no se tiene conocimiento de las probabilidades de los eventos futuros, no se tiene idea de cuan posibles sean las diferentes consecuencias. Por ejemplo tratar de adivinar si al tirar una moneda al aire el resultado es cara o cruz sin saber si la moneda tiene dos caras, es legal, tiene dos cruces. Otro ejemplo seria también el de tratar de decidir si se debe aceptar una oferta de trabajo sin saber si después se tendrá una mejor.
Esta categoría es realmente como disparar en la obscuridad. ¿Habrá una manera óptima de disparar en la obscuridad? En realidad no. Aun así se pueden ofrecer varios métodos para manejar problemas de este tipo.
Primero debe tratarse de reducir la incertidumbre obteniendo información adicional sobre el problema. Con frecuencia esto basta para que la solución sea evidente. Si esto falla, se tienen varios caminos abiertos.
Una manera de manejar este tipo de situaciones es introduciendo abiertamente en el problema los sentimientos subjetivos de optimismo y pesimismo. Esto no es tan malo como parece; en muchas ocasiones, los sentimientos subjetivos tienen una base razonable. Un ejemplo es la decisión de cuantos árboles de Navidad ordenar. Se puede tener razón al pensar que las ventas de árboles deben ser buenas: la congregación de la iglesia es grande, habrá buena publicidad y no hay
...