Tarea. Usted es gerente de una pequeña fábrica de artefactos
Enviado por pedroEnma • 18 de Noviembre de 2017 • Biografía • 1.768 Palabras (8 Páginas) • 523 Visitas
Capitulo 9
Ramona Campusano
Ejercicio 4 100013570
Usted es gerente de una pequeña fábrica de artefactos solo hay dos empresas, incluida la de usted, que producen estos artefactos. Aún más su compañía y su competidora son idénticos. Usted produce el mismo bien y tiene los mismos costos de producción, descritos por la siguiente función de costo total = 1500 + 8q, donde q es la producción de una empresa individual. El precio de liquidación del mercado de estos artefactos puede describirse como p = 200- 2q donde Q 0 q1+q2 y donde q1 es su producción y q2 es la de su rival. La junta directiva le ha instruido para que escoja un nivel de producción que maximice la utilidad de la competencia ¿cuantos artefactos produciría su empresa para alcanzar la meta de maximización de utilidades? aún más usted debe presentar su estrategia a la junta directiva y explicarle porque la fábrica de esta cantidad de artefactos es la estrategia que maximiza las utilidades de la compañía.
Datos
P=200-2q
CT= 1500+8q
A=200
B=2
CM= dxCT/dxQ= 8
q* = 2(A-C) /3B
q* = 2(200-8) /3(2) = 32
Q*=q1+q2 Q*=64
P*= A+2C(8)/3
P*= 200+2 (8)/3 =72
‖ = (A-C)²/9B = 2,048
MR = 200-2q1-4(32) = 8
MR=CM CT=IM
Ejercicio 5
Usted es gerente de una empresa que produce artefactos. Ahora sin embargo hay 14 de estas empresas incluida la de usted. Así por ejemplo si se fabrican 120 artefactos en la industria cada empresa es idéntica, cada una fábrica el mismo producto y tiene los mismos costos de producción igual su competidora como cada una de las otras tiene la misma función de CT=200+50q, donde q es la producción de cada empresa individual. El precio al que usted puede vender sus artefactos está determinado por la demanda del mercado, que se ha estimado como P= 290-1/3Q donde Q es la suma de todas las empresas de esta industria. Así por ejemplo si se fabrican 120 artefactos, entonces el precio de liquidación será 250, mientras que si se fabrican 300 entonces el precio será 190.
P=290-1/3Q
CT=200-50q
A= 290
B=1/3
C = 50
N = 14
q* A-C/ (N+1) B = 290-50/15(1/3) = 240/5=48
Q* = N(A-C)/(N+1)B = 14(240)/5=3,360/5=672
P*= A/N+1+N/N+1(8)=66
Q*-1=672-48=624
IMg= A-BQ-1-2B+1=C
(290-1/*624)-2(1/3)48=50
290-208-32=50
50=50
Ejercicio 6
La demanda inversa del mercado de papel para fax está dada por 400-2Q. Hay 2 empresas que fabrican este papel. Cada empresa tiene un costo por unidad de producción igual a 40 y compiten en el mercado por sus volúmenes de producción, es decir, puede elegir cualquier volumen y toman decisiones al mismo tiempo.
- Muestre como derivar el equilibrio de Cournot-Nash en ese juego. ¿Cuáles son las utilidades de la empresa en equilibrio?
P= 400-2Q
Costo por unidad $40
A= 400
B= 2
c= 40
Q*= [pic 1]
Q*= =[pic 2]
Q*= = 120[pic 3]
Q*=120
Como esta es la producción total y estamos evaluando dos empresas podemos decir que: Q*= = 60 serán las cantidades por empresa.[pic 4]
Nota: q= q2
q1*= - = - = 90-[pic 5][pic 6][pic 7][pic 8][pic 9]
q*1= 90 - esta es la función de respuesta.[pic 10]
Las utilidades podemos verlas donde MR=MC
P= 400- 2Q ; P= 400 - 2q1 -4q2
MR= 400 - 2q1 -4q2
MR= 400 -2(60) -4(60)= 400 - 120- 240= 40
MR=40
Ese cumple MR=MC
- ¿Cuál es la producción de monopolio, es decir, aquella que maximiza la utilidad total de la industria? ¿Por qué una mitad de la producción de monopolio no está produciendo un resultado de equilibrio de Nash?
La producción en el monopolio es: Q*=120. En este caso sería porque no tiene incentivo para producir a ese nivel.
- Supongamos ahora que la empresa 1 tiene una ventaja en costos. Su costo unitario es constante es igual a 25, mientras que la empresa 2 tiene el mayor costo unitario de 40. ¿Cuál es ahora la producción de Cournot? ¿Cuáles son las utilidades de la empresa?
Empresa 1
Costo por unidad $25
Empresa 2
Costo por unidad $40
Las producciones para cada empresa estarán dadas por
c=c2
2c=c1
q1*=[pic 11]
q1*=[pic 12]
q1*=65
q1*= - [pic 13][pic 14]
q1*= - [pic 15][pic 16]
q1*= 93.75 - esta es la función de mejor respuesta de la empresa 1[pic 17]
2c=c2
c=c1
q2*=[pic 18]
q2*=[pic 19]
q2*= 57.5
q2*= - [pic 20][pic 21]
q2*= - [pic 22][pic 23]
q2*= 90 - esta es la función de mejor respuesta de la empresa 2[pic 24]
...